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Preface

The first part of this preface is for the student; the second for the instructor. But

whoever you are, welcome to both parts.

For the Student

You have finished secondary school, and are about to begin at a university or

technical college. You want to study computing. The course includes some

mathematics { and that was not necessarily your favourite subject. But there is

no escape: some finite mathematics is a required part of the first year curriculum.

That is where this book comes in. Its purpose is to provide the basics { the

essentials that you need to know to understand the mathematical language that is

used in computer and information science.

It does not contain all the mathematics that you will need to look at through

the several years of your undergraduate career. There are other very good,

massive volumes that do that. At some stage you will probably find it useful to

get one and keep it on your shelf for reference. But experience has convinced this

author that no matter how good the compendia are, beginning students tend to

feel intimidated, lost, and unclear about what parts to focus on. This short book,

on the other hand, offers just the basics which you need to know from the

beginning, and on which you can build further when needed.

It also recognizes that you may not have done much mathematics at school,

may not have understood very well what was going on, and may even have grown



to detest it. No matter: you can re-learn the essentials here, and perhaps even have

fun doing so.

So what is the book about? It is about certain mathematical tools that we need

to apply over and over again when working with computations. They include:

l Collecting things together. In the jargon of mathematics, this is set theory.

l Comparing things. This is the theory of relations.

l Associating one item with another. This is the theory of functions.

l Recycling outputs as inputs. We introduce the ideas of induction and recursion.

l Counting. The mathematician’s term is combinatorics.

l Weighing the odds. This is done with the notion of probability.

l Squirrel math. Here we look at the use of trees.

l Yea and Nay. Just two truth-values underlie propositional logic.

l Everything and nothing. That is what quantificational logic is about.

Frankly, without an understanding of the basic concepts in these areas, you

will not be able to acquire more than a vague idea of what is going on in computer

science, nor be able to make computing decisions with discrimination or crea-

tively. Conversely, as you begin to grasp them, you will find that their usefulness

extends far beyond computing into many other areas of thought.

The good news is that there is not all that much to commit to memory. Your

sister studying medicine, or brother going for law, will envy you terribly for this.

In our subject, the essential thing in our kind of subject is to understand, and be

able to apply.

But that is a much more subtle affair than you might imagine. Understanding

and application are interdependent. Application without understanding is blind,

and quickly leads to ghastly errors. On the other hand, comprehension remains

poor without practice in application. In particular, you do not understand a

definition until you have seen how it takes effect in specific situations: positive

examples reveal its range, negative examples show its limits. It also takes time to

recognize when you have really understood something, and when you have done

no more than recite the words, or call upon it in hope of blessing.

For this reason, doing exercises is a indispensable part of the learning process.

That is part of what is meant by the old proverb ‘there is no royal road in

mathematics’. It is also why we give so many problems and provide sample

answers to some. Skip them at your peril: no matter how simple and straightfor-

ward a concept seems, you will not fully understand it unless you practice using it.

So, even when an exercise is accompanied by a solution, you will benefit a great
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deal if you place a sheet over the answer and first try to work it out for yourself.

That requires self-discipline and patience, but it brings real rewards.

In addition, the exercises have been chosen so that for many of them, the result

is just what we need to make a step somewhere later in the book. They are thus

integral to the development of the general theory.

By the same token, don’t get into the habit of skipping the proofs when you

read the text. In mathematics, you have never fully understood a fact unless you

have also grasped why it is true, i.e. have assimilated at least one proof of it. The

well-meaning idea that mathematics can be democratized by teaching the ‘facts’

and forgetting about the proofs has, in some countries, wrought disaster in

secondary and university education in recent decades.

In practice, the mathematical tools that we bulleted above are rarely applied

in isolation from each other. They gain their real power when used in combina-

tion, setting up a crossfire that can bring tough problems to the ground. The

concept of a set, once explained in the first chapter, is used absolutely everywhere

in what follows. Relations reappear in graphs and trees. The familiar arithmetical

operations of addition and multiplication, heavily employed in combinatorics and

probability, are of course particular examples of functions. And so on.

For the Instructor

Any book of this kind needs to find a delicate balance between the competing

demands of intrinsic mathematical order and those of intuition. Mathematically,

the most elegant and coherent way to proceed is to begin with the most general

concepts, and gradually unfold them so that the more specific and familiar ones

appear as special cases. Pedagogically, this sometimes works, but it can also be

disastrous. There are situations where the reverse is often required: begin with

some of the more familiar special cases, and then show how they may naturally be

broadened into cover much wider terrain.

There is no perfect solution to this problem; we have tried to find a least

imperfect one. Insofar as we begin the book with sets, relations and functions in

that order, we are following the first path. But in some chapters we have followed

the second one. For example, when explaining induction and recursion we begin

with the most familiar special case, simple induction/recursion over the positive

integers; passing to their cumulative forms over the same domain; broadening to

their qualitatively formulated structural versions; and finally presenting the most

general forms on arbitrary well-founded sets. Again, in the chapter on trees, we

have taken the rather unusual step of beginning with rooted trees, where intuition

is strongest, then abstracting to unrooted trees.
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In the chapters on counting and probability we have had to strike another

balance { between traditional terminology and notation, which antedates the

modern era, and its translation into the language of sets, relations and functions.

Most textbook presentations do everything the traditional way, which has its

drawbacks. It leaves the student in the dark about the relation of this material to

what was taught in earlier chapters on sets, relations and functions. And, frankly,

it is not always very rigorous or transparent. Our policy is to familiarize the reader

with both kinds of presentation { using the language of sets and functions for a

clear understanding of the material itself, and the traditional languages of com-

binatorics and probability to permit communication in the local dialect.

The place of logic in the story is delicate. We have left its systematic exposition

to the end, a decision that may seem rather strange. For surely one uses logic

whenever reasoning mathematically, even about such elementary things as sets,

relations and functions, covered in the first three chapters. Don’t we need a

chapter on logic at the very beginning? The author’s experience in the classroom

tells him that in practice that does not work well. Despite its simplicity { indeed

because of it { logic can appear intangible for beginning students. It acquires

intuitive meaning only as its applications are revealed. Moreover, it turns out that

a really clear explanation of the basic concepts of logic requires some familiarity

with the mathematical notions of sets, relations, functions and trees.

For these reasons, the book takes a different tack. In its early chapters, notions

of logic are identified briefly as they arise in the discussion of more ‘concrete’

material. This is done in ‘logic boxes’. Each box introduces just enough to get on

with the task in hand. Much later, in the last two chapters, all this is brought

together and extended in a systematic presentation. By then, the student will

have little trouble appreciating what the subject is all about, and how natural it

all is.

From time to time there are boxes of a different nature { ‘Alice boxes’. This

little trouble-maker comes from the pages of Lewis Carroll, to ask embarrassing

questions in all innocence. Often they are questions that bother students, but

which they have trouble articulating clearly or are too shy to pose. In particular, it

is a fact that the house of mathematics and logic can be built in many different

ways, and sometimes the constructions of one text appear to be in conflict with

those of another. Perhaps the most troublesome example of this comes up in

quantificational logic, with different ways of reading the quantifiers and even

different ways of using the terms ‘true’ and ‘false’. But there are also plenty of

others, in all the chapters. It is hoped that the Mad Hatter’s responses are of

assistance.

Overall, our choice of topics is fairly standard, as the chapter titles indicate. If

strapped for class time, an instructor could omit some of the later sections of

Chapters 5{9, perhaps even from the end of Chapter 4. But it is urged that
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Chapters 1{3 be kept intact, as everything in them is subsequently needed. Some

instructors may wish to add or deepen topics; as this text makes no pretence to

cover all possible areas of focus, such extensions are left to their discretion.

We have not included a chapter on the theory of graphs. This was a difficult

call to make, and the reasons were as follows. Although trees are a particular kind

of graph, there is no difficulty in covering everything we want to say about trees,

without entering into the more general theory. Moreover, an adequate treatment

of graphs, even if squeezed into one chapter of about the same length as the others,

takes a good two weeks of additional class time to cover properly. The general

theory of graphs is a rather messy area, with options about how wide to cast the

net (graphs with or without loops, multiple edges etc as well as the basic distinc-

tion between directed and undirected graphs), and a rather high definition/

theorem ratio. The author’s experience is that students gain little from a high-

speed run through these distinctions and definitions, memorized for the examina-

tions and then promptly forgotten.

Finally, a decision had to be made whether to include specific algorithms and,

if so, in what form: ordinary English, pseudo-code outline, or a real-life program-

ming language in full detail? Our decision has been to leave options open as much

as possible. In principle, most first year students of computing will be taking, in

parallel, courses on principles of programming and some specific programming

language. But the programming languages chosen will differ from one institution

to another. The policy in this text is to sketch the essential idea of basic algorithms

in plain but carefully formulated English. In some cases (particularly the chapter

on trees), we give optional exercises in expressing them in pseudo-code. Instruc-

tors wishing to make more systematic use of pseudo-code, or to link material with

specific programming languages, should feel free to do so.
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1
Collecting Things Together: Sets

Chapter Outline

In this chapter we introduce the student to the world of sets. Actually, only a little

bit of it, the part that is needed to get going.

After giving a rough intuitive idea of what sets are, we present the basic

relations between them: inclusion, identity, proper inclusion, and exclusion. We

describe two common ways of identifying sets, and pause to look more closely at

the empty set. We then define some basic operations for forming new sets out of

old ones: intersection, union, difference and complement. These are often called

Boolean operations, after George Boole who first studied them systematically in

the middle of the nineteenth century.

Up to this point, the material is all ‘flat’ set theory, in the sense that it does not

look at what happens when we build sets of sets. However we need to go a little

beyond the flat world. In particular, we generalize the notions of intersection and

union to cover arbitrary collections of sets, and introduce the very important

concept of the power set of a set, i.e. the set of all its subsets.

1.1 The Intuitive Concept of a Set

Every day you need to consider things more than one at a time. As well as thinking

about a particular individual, such as the young man or woman sitting on your

left in the classroom, you may focus on some collection of people { say, all those
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students who come from the same school as you do, or all those with red hair. A set

is just such a collection, and the individuals that make it up are called its elements.

For example, each student with green eyes is an element of the set of all students

with green eyes.

What could be simpler? But be careful! There might be many students with

green eyes, or none, or maybe just one, but there is always exactly one set of them. It

is a single item, even when it has many elements. Moreover, whereas the students

themselves are flesh-and-blood persons, the set is an abstract object, thus different

from those elements. Even when the set has just one element, it is not the same thing

as that unique element. For example, even if Achilles is the only person in the class

with green eyes, the corresponding set is distinct from Achilles; it is an abstract item

and not a person. To anticipate later terminology, the point is often marked by

calling it the singleton for that person, and writing it as fAchillesg.
The elements of a set need not be people. They need not even be physical

objects; they may in turn be abstract items. For example, they can be numbers,

geometric figures, items of computer code, colours, concepts, or whatever you

like. . .and even other sets.

We need a notation to represent the idea of elementhood. We write x 2A for x

is an element of A, and x =2A for x is not an element of A. Here, A is a set; x may or

may not be a set; in the simple examples it will not be one. The sign 2 is derived

from one of the forms of the Greek letter epsilon.

1.2 Basic Relations Between Sets

1.2.1 Inclusion

Sets can stand in various relations to each other. One basic relation is that of

inclusion. When A, B are sets, we say that A is included in B (or: A is a subset of B)

and write A�B iff every element of A is an element of B. In other words, iff for all

x, if x 2 A then x 2 B. Put in another way that is sometimes useful, iff there is no

element of A that is not an element of B. Looking at the same relation from the

other side, when this holds, we also say that B includes A (B is a superset of A) and

write B � A.

Alice Box: iff

Alice: Hold on, what’s this ‘iff’? It’s not in my dictionary.

Hatter: Too bad for your dictionary. The expression was introduced around

the middle of the last century by the mathematician Paul Halmos, as a handy

(Continued)
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Alice Box: (Continued)

shorthand for ‘if and only if’, and soon became standard among

mathematicians.

Alice: OK,butaren’twe doing some logic here? I see words like ‘if’, ‘only if’, ‘every’,

‘not’, and perhaps more. Shouldn’t we begin by explaining what they mean?

Hatter: We could, but life will be easier if for the moment we simply use these

particles as you would in everyday life. We will get back to their exact logical

analysis later.

EXERCISE 1.2.1 (WITH SOLUTION)

Which of the following sets are included in which? Use the notation above,

and express yourself as succinctly and clearly as you can. Recall that a

prime number is a positive integer greater than 1 that is not divisible by any

positive integer other than itself and 1.

A : The set of all positive integers less than 10

B : The set of all prime numbers less than 11

C : The set of all odd numbers greater than 1 and less than 6

D : The set whose only elements are 1 and 2

E : The set whose only element is 1

F : The set of all prime numbers less than 8

Solution: Each of these sets is included in itself, and each of them is

included in A. In addition, we have C � B, E � D, F � B, B � F.

Comments: Note that none of the other converses hold. For example, we

do not have B � C, since 7 2 B but 7 =2 C. Note also that we do not have

E � B since 1 is not a prime number.

Warning: Avoid saying that A is ‘contained’ in B, as this is rather ambiguous.

It can mean that A � B, but it can also mean that A 2 B. These are not the

same, and should never be confused. For example, the integer 2 is an element of

the set Nþ of all positive integers, but it is not a subset of Nþ. Conversely, the

set E of all even integers is a subset of Nþ, i.e. each of its elements 2, 4,. . . is an

element of Nþ; but E is not an element of Nþ.

1.2 Basic Relations Between Sets 3



1.2.2 Identity

The notion of inclusion leads us to the concept of identity (alias equality) between

sets. Clearly, if both A � B and B � A then A and B have exactly the same

elements { every element of either is an element of the other; in other words, there

is no element of one that is not an element of the other. A basic principle of set

theory, called the axiom (or postulate) of extensionality, says something more:

When both A �B and B �A then the sets A, B are in fact identical. They are one

and the same set, and we write A ¼ B.

EXERCISE 1.2.2 (WITH SOLUTION)

Which sets in the top row are identical with their counterparts in the

bottom row? Read the curly braces as framing the elements of the set so

that, for example, f1, 2, 3g is the set whose elements are just 1, 2, 3. Be

careful with the answers.

f1, 2, 3g f9, 5g f0, 2, 8g f7g f8g fLondon, Leedsg
f3, 2, 1g f9, 5, 9g fÅp4Å, 0/5, 23g 7 ff8gg fLondres, ‘Leeds’g

Solution:

yes yes yes no no no

Comments:

Column 1: The order of enumeration makes no difference { the sets still

have the same elements.

Column 2: Repeating an element in the enumeration is inelegant, but it

makes no difference { the sets still have the same elements.

Column 3: The elements have been named differently, as well as being

written in a different order but they are the same.

Column 4: 7 is a number, not a set, while f7g is a set with the number 7 as its

only element, i.e. its singleton.

Column 5: This time, top and bottom are both sets, and they both have just

one element, but these elements are not the same. The unique element of
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the top set is the number 8, while the unique element of the bottom set is

the set f8g. The bottom set is the singleton of the top one.

Column 6: These are both two-element sets. The first-mentioned elements

are the same: London is the same city as Londres, although they are

named in different languages. But the second-mentioned elements are

not the same: Leeds is a city whereas ‘Leeds’ is the name of that city.

The distinctions in the last three columns may seem rather pedantic,

but they turn out to be very important to avoid confusions when we are

dealing with sets of sets or with sets of symbols, as is often the case in

computer science.

EXERCISE 1.2.3 (WITH SOLUTION)

In Exercise 1.2.1, which of the sets are identical to which?

Solution: B ¼ F (so that also F ¼ B). And of course A ¼ A, B ¼ B etc {

each of the listed sets is identical to itself.

Comment: The fact that we defined B and F in different ways makes no

difference: the two sets have exactly the same elements and so by the axiom

of extensionality are identical.

1.2.3 Proper Inclusion

When A � B but A 6¼ B then we say that A is properly included in B, and write

A� B. Sometimes� is written with a small 6¼ underneath. That should not cause

any confusion, but another notational dialect is more dangerous: a few older texts

use A � B for plain inclusion. Be wary when you read.

EXERCISE 1.2.4 (WITH SOLUTION)

In Exercise 1.2.1, which of the sets are properly included in which? In each

case give a ‘witness’ to the proper nature of the inclusion, i.e. identify an

element of the right one that is not an element of the left one.

Solution: C � B, witnesses 2,7; E � D, sole witness 2.

Comment: B 6� F, since B and F have exactly the same elements.

1.2 Basic Relations Between Sets 5



1.2.4 Euler Diagrams

If we think of a set A as represented by all the points in a circle (or other closed

plane figure) then we can represent the notion of one set A being a proper subset

of another B by putting a circle labelled A inside a circle labelled B. We can

diagram equality, of course, by drawing just one circle and labelling it both A

and B. Thus we have the following Euler diagrams (so named after the eight-

eenth century mathematician Euler who used them when teaching a princess by

correspondence):

A

B

A ⊂ B

A, B

A = B

Figure 1.1 Euler diagrams for proper inclusion and identity.

How can we diagram inclusion in general? Here we must be careful. There is no

single Euler diagram that does the job. When A�B then we may have either of the

above two configurations: if A � B then the left diagram is appropriate, if on the

other hand A ¼ B then the right diagram is the correct one.

Diagrams are a very valuable aid to intuition, and it would be pedantic and

unproductive to try to do without them. But we must also be clearly aware of their

limitations. If you want to visualize A � B and you don’t know whether the

inclusion is proper, you will need to consider two Euler diagrams and see what

happens in each.

1.2.5 Venn Diagrams

Alternatively, you can use another kind of diagram, which can represent plain

inclusion without ambiguity. It is called a Venn diagram (after the nineteenth

century logician John Venn). It consists of drawing two circles, one for A and one

for B, always intersecting no matter what the relationship between A and B, and

then putting a mark (e.g. ˘) in an area to indicate that it has no elements, and

another kind of mark (e.g. a cross) to indicate that it does have at least one

element. With these conventions, the left diagram below represents A � B while

the right diagram represents A � B.
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A AB B

A ⊂ BA ⊆ B

×∅∅

Figure 1.2 Venn diagrams for inclusion and proper inclusion.

Note that the disposition of the circles is always the same: what changes are

the areas noted as empty or as non-empty. There is considerable variability in the

signs used for this, dots, ticks, etc.

A great thing about Venn diagrams is that they can represent common

relationships like A � B by a single diagram, rather than by an alternation of

different diagrams. Another advantage is that with some additions they can be

used to represent basic operations on sets as well as relations between them. The

bad news is that when you have more than two sets to consider, Venn diagrams

quickly become very complicated and lose their intuitive clarity { which was, after

all, their principal raison d’être.

Warning: Do not confuse Euler diagrams with Venn diagrams. They are

constructed differently and read differently. Unfortunately, textbooks themselves

are sometimes sloppy here, using the terms interchangeably or even in reverse.

1.2.6 Ways of Defining a Set

The work we have done so far already illustrates two important ways of defining

or identifying a set. One way is to enumerate all its elements individually between

curly brackets, as we did in Exercise 1.2.2. Evidently, such an enumeration can be

completed only when there are finitely many elements, and in practice only when

the set is fairly small. The order of enumeration makes no difference to what items

are elements of the set, e.g. f1,2,3g ¼ f3,1,2g; but we usually write elements in

some conventional order such as increasing size to facilitate reading.

Another way of identifying a set is by providing a common property: the

elements of the set are understood to be all (and only) the items that have that

property. That is what we did for several of the sets in Exercise 1.2.1. There is a

notation for this. For example, we write the first set as follows: A ¼ fx 2 Nþ:

x < 10g. Here Nþ stands for the set of all integers greater than zero (the positive

integers). Some authors use a vertical bar in place of a colon.

1.2 Basic Relations Between Sets 7



EXERCISE 1.2.5 (WITH SOLUTION)

(a) Identify the sets A, B, C, F of Exercise 1.2.1 by enumeration.

(b) Identify the sets D, E of the same exercise by properties, using the

notation introduced.

Solution:

(a) A ¼ f1,2,3,4,5,6,7,8,9g; B ¼ f2,3,5,7g;C ¼ f3,5g,F ¼ f2,3,5,7g.

(b) There are many ways of doing this, here are some. D ¼ fx 2 Nþ: x

divides all even integersg; E ¼ fx 2Nþ: x is less than or equal to every

positive integerg.
When a set is infinite, we often use an incomplete ‘suspension points’ notation.

Thus, we might write the set of all even positive integers and the set of all primes

respectively as follows: f2, 4, 6,. . .g, f2, 3, 5, 7, 11, . . .g. But it should be

emphasized that this is an informal way of writing, used when it is well understood

between writer and reader what particular continuation is intended. Clearly,

there are many ways of continuing each of these partial enumerations. We

normally understand that the most familiar or simplest is the one that is meant.

These two methods of identifying a set { by enumeration and by a common

property { are not the only ones. In a later chapter we will be looking at another very

important one, known as recursive definition.

EXERCISE 1.2.6 (WITH PARTIAL SOLUTION)

True or false? In each case use your intuition to make a guess, and establish

it by either proving the point from the definitions (if you guessed positively)

or giving a simple counterexample (if you guessed negatively). Make sure

that you don’t confuse � with �.

(a) Whenever A � B and B � C then A � C

(b) Whenever A � B and C � B then A � C

(c) Whenever A1�A2� . . .�An and also An�A1 then Ai¼Aj for all i,j� n

(d) A � B iff A � B and B 6� A

(e) A � B iff A � B or A ¼ B

(f) A ¼ B iff neither A � B nor B � A

8 1. Collecting Things Together: Sets



(g) Whenever A � B and B � C then A � C

(h) Whenever A � B and B � C then A � C

Solutions to (a), (b), (f), (h):

(a) True. Take any sets A, B, C. Suppose A � B and B � C; it suffices to

show A � C. Take any x, and suppose x 2 A; by the definition of

inclusion, it is enough to show x 2 C. But since x 2 A and A � B we

have by the definition of inclusion that x 2 B. So since also B � C we

have again by the definition of inclusion that x 2 C, as desired.

(b) False. Counterexample: A ¼ f1g, B ¼ f1,2g, C ¼ f2g.

(f) False. The left to right implication is correct, but the right to left one is

false, so that the entire co-implication (the ‘iff’) is also false. Counter-

example: A ¼ f1g, B ¼ f2g.

(h) True. Take any sets A, B, C. Suppose A � B and B � C. From the

former by the definition of proper inclusion we have A � B. So by

exercise (a) we have A�C. It remains to show that A 6¼C. Since A�B

we have by exercise (d) that B 6� A, so by the definition of inclusion

there is an x with x 2B but x =2A. Thus since B�C we have x2C while

x =2 A, so that C 6� A and thus A 6¼ C as desired.

Comment: The only false ones are (b) and (f). All the others are true.

We have given the proofs of the positive solutions in quite full detail, perhaps

even to the point of irritation. The reason is that they illustrate some general

features of proof construction, which we now articulate.

Logic Box: Proving general and conditional statements

Proving general statements. If you want to prove a statement about all things

of a certain kind, a straightforward line of attack is to consider an arbitrary

one of those things, and show that the statement holds of it. In the example,

we wanted to show that whenever A� B and B� C then A� C. We did this

by choosing arbitrary A,B,C, and working with them. This procedure is so

obvious that can pass unnoticed; indeed, we often won’t bother to mention it

explicitly. But the logical principles underlying the procedure are important

and quite subtle, as we will see in a later chapter when we discuss the ideas of

universal instantiation and generalization.

Proving conditional statements. If you want to prove a statement of the

form ‘if this then that’, a straightforward line of attack is to suppose that the

(Continued)
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Logic Box: (Continued)

first is true, and on that basis show that the second is true. We did this in the

proof of (a). Actually, we did it twice : first we supposed that A� B and B�
C were true, and set our goal as showing A � C. Later, we supposed that x 2
A, and aimed to get x 2 C.

Our examples also illustrate some heuristics (rough guides) for finding proofs.

They are hardly more than commonsense, but when overlooked can be a source of

failure and confusion.

Proof heuristics: Destination, starting point, toolkit

Always be clear what you are trying to show. If you don’t know what you are

trying to prove it is unlikely that you will prove it, and if by chance you do, the

proof will probably be a real mess. Following this rule is not as easy as may appear,

for as a proof develops, the goal changes! For example, in Exercise 1.2.6 (a), we

began by trying to show (a) itself. After choosing A,B,C arbitrarily, we sought to

prove the conditional statement ‘If A � B and B � C then A � C’. Then, after

supposing that A�B and B� C, we switched our goal to A�C. We then chose

an arbitrary x, supposed x 2 A, and aimed for x 2 C. In half a dozen lines, four

different goals! At each stage we have to be aware of which one we are driving at.

When we start using more sophisticated tools for building proofs, such as argu-

ment via contraposition and reductio ad absurdum (to be explained later), the

goal-shifts become even more striking.

As far as possible, be aware of what you are allowed to use, and don’t hesitate to

use it. What are you allowed to use? In the first place, you may use the

definitions of terms in the problem (in our example, the notions of subset and

proper subset). Too many students come to mathematics with the idea that a

definition is just something for decoration, something that you can hang on the

wall like a picture or diploma. A definition is for use. In a very simple proof, half

the steps can consist of ‘unpacking’ the definitions and then, after reasoning,

packing them together again. In the second place, you may use whatever basic

axioms (alias postulates) that you have been supplied with. In the exercise, that

was just the principle of extensionality. In the third place, you can use anything

that you have already proven. In the exercise, we did this while proving (h).

Be flexible and ready to go into reverse. If you can’t prove that a statement is

true, try looking for a counterexample in order to show that it is false. If you

can’t find a counterexample, try to prove that it is true. With some experience,

(Continued)
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Proof heuristics: (Continued)

you can often use the failure of your attempted proofs as a guide to finding a

suitable counterexample, and the failures of your trial counterexamples to give

a clue for constructing a proof. This is all part of the art of proof and refutation.

1.3 The Empty Set

1.3.1 Emptiness

What do the following two sets have in common?

A ¼ fx 2 Nþ : x is both even and oddg

B ¼ fx 2 Nþ : x is prime and 24 � x � 28g

Answer: neither of them has any elements. From this it follows that they have

exactly the same elements { neither has any element that is not in the other. So by the

principle of extensionality, they are identical, i.e. they are the same set. Thus A¼B,

even though they are described differently.This leads to the following the definition.

The empty set, written ˘, is defined to be the (unique) set that has no elements at all.

This is a very important set, just as zero is a very important number. The

following exercise gives one of its basic properties.

EXERCISE 1.3.1 (WITH SOLUTION)

Show that ˘ � A for every set A.

Solution: We need to show that for all x, if x 2˘ then x 2A. In other words:

there is no x with x 2 ˘ but x =2 A. But by the definition of ˘, there is no x

with x 2 ˘, so we are done.

Alice Box: if. . .then. . .

Alice: That’s a short proof, but a strange one. You say ‘in other words’, but

are the two formulations really equivalent?

Hatter: Indeed they are. This is because of the way in which we understand

‘if. . .then. . .’ statements in mathematics. We could explain that in detail

now, but it is probably better to come back to it a bit later.

Alice: It’s a promise?

Hatter: It’s a promise!

1.3 The Empty Set 11



1.3.2 Disjoint Sets

With the empty set in hand, we can define a final relation between sets. We say

that sets A, B are disjoint (alias mutually exclusive) iff they have no elements in

common. That is, iff there is no x such that both x 2 A and x 2 B. When they are

not disjoint, i.e. have at least one element in common, we can say that they overlap.

More generally, when A1,. . .,An are sets, we say that they are pairwise disjoint

iff for any i,j � n, if i 6¼ j then Ai has no elements in common with Aj.

EXERCISE 1.3.2

(a) Of the sets in Exercise 1.2.1, which are disjoint from which?

(b) Draw a Euler diagram and also a Venn diagram to express the situation

that A and B are disjoint. Draw a Venn diagram to expres the situation

that they overlap. Why is there no single Euler diagram for the latter?

(c) Construct three sets X, Y, Z such that X is disjoint from Y and Y is

disjoint from Z, but X is not disjoint from Z.

(d) Show that the empty set is disjoint from every set, including itself.

1.4 Boolean Operations on Sets

We now define some operations on sets, that is, ways of constructing new sets out

of old. There are three basic ones: intersection, meet, and relative complement,

and several others that can be defined in terms of them.

1.4.1 Intersection

If A and B are sets, we define their intersection A\B, also known as their meet, by

the following rule. For all x:

x 2 A \ B iff x 2 A and x 2 B

EXERCISE 1.4.1 (WITH PARTIAL SOLUTION)

Show the following :

(a) A\B � A and A\B � B

(b) Whenever X � A and X � B then X � A\B

12 1. Collecting Things Together: Sets



(c) A\B ¼ B\A (commutation principle)

(d) A\ (B\C) ¼ (A\B)\C (association)

(e) A\A ¼ A (idempotence)

(f) A\˘ ¼ ˘ (bottom)

(g) Reformulate the definition of disjoint sets using intersection.

Solutions to (b), (f), (g):

For (b): Suppose X�A and X� B; we want to show X�A\B. Take any x

and suppose x2X; we need to show that x2A\B. But since x2X and X�A

we have by the definition of inclusion that x2A; and similarly since x2X and

X�B we have x2B. So by the definition of intersection, x2A\B as desired.

For (f): We already have A\˘ � ˘ by (a) above. And we also have ˘ �
A\˘ by Exercise 1.3.1, so we are done.

For (g): Sets A, B are disjoint iff A\B ¼ ˘.

Logic Box: Conjunction

Intersection is defined using the word ‘and’. But what does this mean? In mathe-

matics it is very simple { much simpler than in ordinary life. Consider any two

statements (alias propositions)a,b.Each can be true, or false, butnot both.When

is the statement ‘a and b’, called the conjunction of the two parts, true? The

answer is intuitively clear: when each of a, b considered separately is true, the

conjunction is true, but in all other cases the conjunction is false. What are the

other cases? There are three of them:a true withb false,a false withb true,a false

with b false.

What we have just said can be put in the form of a table, called the truth-table

for conjunction.

a b a^b
1 1 1

1 0 0

0 1 0

0 0 0

To read this table, each row represents a possible combination of truth-

values of the parts a, b. For brevity we write 1 for ‘true’ and 0 for ‘false’. The

rightmost entry in the row gives us the resulting truth-value of the conjunction ‘a
andb’, which we write asa^b. Clearly, the truth-value of the conjunction is fully

(Continued)
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Alice Box: (Continued)

determined by each combination of truth-values of the parts. For this reason,

conjunction is called a truth-functional logical connective.

In a chapter on logic, we will look at the properties and behaviour of

conjunction. As you may already have guessed, the behaviour of intersection

as an operation on sets reflects that of conjunction as a connective between

propositions. This is because the latter is used in the definition of the former.

For example, the commutativity of intersection is a reflection of the fact that

‘a and b’ has exactly the same truth-conditions as ‘b and a’.

For reflection: How do you square this with the difference in meaning between

‘They got married and had a baby’ and ‘They had a baby and got married’?

1.4.2 Union

Alongside intersection we have another operation called union. The two operations

are known as duals of each other, in the sense that each is like the other ‘upside down’.

For any sets A and B, we define their union A[B by the following rule. For all x:

x 2 A [B iff x 2 A orx 2 B;

where this is understood in the sense:

x 2 A [ B iffx 2 A orx 2 B ðor bothÞ;
in other words:

x 2 A [B iffx is an element of at least one ofA; B:

The contrast with intersection may be illustrated by Venn diagram. The two

circles represent the sets A, B. The left shaded area represents A[B, while the

right shaded area represents A\B.

A B A B

A ∪ B A ∩ B

Figure 1.3 Venn diagrams for union and intersection.
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The properties of union are just like those of intersection but ‘upside down’.

Evidently, this is a rather vague way of speaking; it can be made precise, but it is

better to leave the idea on an intuitive level for the moment.

EXERCISE 1.4.2

Show the following:

(a) A � A[B and B � A[B

(b) Whenever A � X and B � X then A[B � X

(c) A[B ¼ B[A (commutation principle)

(d) A[(B[C) ¼ (A[B)[C (association)

(e) A[A ¼ A (idempotence)

(f) A[˘ ¼ A (bottom)

Logic Box: Disjunction

When ‘or’ is understood in the sense that we have described, it is known as

(inclusive)disjunction and statements ‘a or b’ are written as a_b. Whereas

there is just one way (out of four) of making a conjunction true, there is just

way of making a disjunction false. The truth-table is as follows:

a b a_b
1 1 1

1 0 1

0 1 1

0 0 0

Clearly, the truth-value of the disjunction is fully determined by each com-

bination of truth-values of the parts. In other words, it is also a truth-

functional logical connective.

The behaviour of union between sets reflects that of disjunction as a con-

nective between propositions.

For reflection: In ordinary discourse we often use ‘a or b’ to mean ‘either a, or

b, but not both’ i.e. ‘exactly one of a, b is true’. This is called exclusive

disjunction. What would its truth-table look like?
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The last two exercises set out some of the basic properties of intersection and

of union, taken separately. But how do they relate to each other? The following

exercise covers the most important interactions.

EXERCISE 1.4.3 (WITH PARTIAL SOLUTION)

Show the following:

(a) A\B � A[B

(b) A\ (A[B) ¼ A ¼ A[(A\B) (absorption)

(c) A\ (B[C)¼ (A\B)[(A\C) (distribution of intersection over union)

(d) A[(B\C) ¼ (A[B)\ (A[C) (distribution of union over intersection)

Solution to (c): Writing LHS, RHS for the left and right hand sides respec-

tively, we need to show that LHS � RHS and conversely RHS � LHS.

For LHS�RHS, suppose that x 2 LHS. Then x 2A and x 2B[C. From the

latter we have that either x 2B or x 2C. Consider the two cases separately.

Suppose first that x 2 B. Since also x 2 A we have x 2 A\B and so by

Exercise 1.4.2 (a), x 2 (A\B)[(A\C) ¼ RHS as desired. Suppose second

that x 2 C. Since also x 2 A we have x 2 A\C and so again x 2
(A\B)[(A\C) ¼ RHS as desired.

For RHS � LHS, suppose that x 2 RHS. Then x 2 A\B or x 2 A\C.

Consider the two cases separately. Suppose first that x 2 A\B. Then x 2 A

and x 2B; from the latter x 2 B[C, and so with the former, x 2A\ (B[C)¼
LHS as desired. Suppose second that that x 2 A\C. The argment is similar:

x 2 A and x 2 C; from the latter x 2 B[C, and so with the former,

x 2 A\ (B[C) ¼ LHS as desired.

Logic Box: Proof by cases

In the exercise above we used a technique known as proof by cases, or

disjunctive proof. Suppose we know that either a is true or b is true, but we

don’t know which. It can be difficult to proceed with this rather weak

information. So we break the argument into two parts.

First we suppose that a is true (the first case) and with this stronger

assumption we head for whatever it was that we were trying to establish.

Then we suppose instead that b is true (the second case) and argue using this

assumption to the same conclusion.

(Continued)
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Alice Box: (Continued)

In each case the goal remains unchanged, but the two cases must be treated

quite separately: we cannot use the supposition for the first case in the

argument for the second case, and vice versa. If we succeed in reaching the

desired conclusion in each case separately, then we know that it must hold

irrespective of which case is true. The arguments carried out in the two

separate cases may sometimes resemble each other closely (as in our exer-

cise). But in more challenging problems they may be very different.

Alice Box: Overlapping cases

Alice: What if both cases are true? For example, in the solution to the preceding

exercise, in say the part for LHS� RHS: what if both x 2 B and x 2 C?

Hatter: No problem! This just means that we have covered that situation

twice. For proof by cases to work, it is not required that the two cases be

exclusive. In some examples (as in our exercise) it is easier to work with

overlapping cases; sometimes it is more elegant and economical to work with

cases that exclude each other.

1.4.3 Difference and Complement

There is one moreBooleanoperation onsets that we wish to consider: difference.Let A,

B be any sets. We define the difference of B in A, written AnB (also as A{B) to be the

set of all elements of A that are not elements of B. That is, AnB¼fx : x2A but x =2Bg.

EXERCISE 1.4.4 (WITH PARTIAL SOLUTION)

(a) Draw a Venn diagram for difference.

(b) Give an example to show that sometimes AnB 6¼ BnA.

(c) Show (i) AnA ¼ ˘, (ii) An˘ ¼ A.

(d) Show that (i) when A�A0 then AnB �A0nB and (ii) when B�B0 then

AnB0 � AnB.

(e) Show that (i) An(B[C) ¼ (AnB)\ (AnC), (ii) An(B\C) ¼
(AnB)[(AnC), and (iii) find a counterexample to An(BnC)¼ (AnB) nC.
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Sample solution to (e)(iii): As a counterexample to (e)(iii), take A to be

any non-empty set, e.g. f1g, and put C ¼ B ¼ A. Then LHS ¼ An(AnA) ¼
An˘ ¼ A while RHS ¼ (AnA)nA ¼ ˘nA ¼ ˘.

The notion of difference acquires particular importance in a special context.

Suppose that we are carrying out an investigation into some fairly large set, such

as the set Nþ of all positive integers, and that for the purposes of the investiga-

tion, the only sets that we need to consider are the subsets of this fixed set. Then it

is customary to refer to the large set as a local universe, writing it as U, and

consider the differences U n B for subsets B � U. As the set U is fixed throughout

the investigation, we may as well simplify notation and write UnB alias U{B as

{UB, or even as simply {B with U left as understood. This application of the

difference operation is called complementation (within the given universe). Many

other notations are also used in the literature for this important operation, e.g. B{,

B 0, Bc (where the index stands for ‘complement’). This time, the Venn diagram

needs only one circle, for the set being complemented.

EXERCISE 1.4.5 (WITH PARTIAL SOLUTION)

(a) Draw the Venn diagram for complementation.

(b) Taking the case that A is a local universe U, rewrite equations (e)

(i) and (ii) of the preceding exercise using the simple complementation

notation described above.

(c) Show that (i) {({B) ¼ B, (ii) {U ¼ ˘, (iii) {˘ ¼ U.

Solutions to (b) and (c)(i):

(b) When A ¼ U then equation (i) becomes Un(B[C) ¼ (UnB)\ (UnC),

which we can write as {(B[C) ¼ {B\ {C; while equation (ii) becomes

Un(B\C)¼ (UnB)[(UnC), which we can write as {(B\C)¼ {B[{C.

(c) (i) We need to show that {({B)¼B, ie. that U{(U{B)¼B whenever B�
U (as assumed when U is taken to be a local universe). We show the two

inclusions separately. First, to show Un(UnB) � B, suppose x 2 LHS.

Then x2U and x =2 (UnB). From the latter, either x =2U or x2B, so using

the former we have x2B = RHS as desired. For the converse, suppose x2
B. Then x =2 (UnB). But by assumption B�U so that x2U, and thus x2
Un(UnB) = LHS as desired.

Comments: The identities {(B\C) ¼ {B[{C and {(B[C) ¼ {B\ {C) are

known as de Morgan’s laws, after the nineteenth century mathematician

who drew attention to them.
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The identity {({B)¼ B is known as double complementation. Note how

its proof made essential use of the hypothesis that B � U.

Logic Box: Negation

You will have noticed that in our discussion of difference and complementation

there were a lot of nots. In other words, we made free use of the logical

connective of negation in our reasoning. What is its logic? Like conjunction

and disjunction, it has a truth-table, which is a simple flip-flop:

a :a
1 0

0 1

The properties of difference and complementation stem, in effect, from the

behaviour of negation used in defining them.

Alice Box: Relative versus absolute complementation

Alice: There is something about this that I don’t quite understand. As you

define it, the complement {B of a set B is always taken with respect to a given

local universe U; it is U{B. But why not define it in absolute terms? Simply

put the absolute complement of B to be the set of all x that are not in B. In

other words, take your U to be the set of everything whatsoever.

Hatter: A natural idea indeed { and this is more or less how things were

understood in the early days of set theory. Unfortunately it leads to unsus-

pected difficulties, indeed to contradiction, as was notoriously shown by

Bertrand Russell at the beginning of the twentieth century.

Alice: What then?

Hatter: To avoid such contradictions, the standard approach as we know it

today, called Zermelo-Fraenkel set theory, does not admit the existence of a

universal set, i.e. one containing as elements everything whatsoever. Nor a

set of all sets. Nor does it admit the existence of the absolute complement of

any set, containing as elements all those things that are not elements of a

given set. For if it did, by union it would also have to admit the universal set.

Alice: Is that the only kind of set theory?

Hatter: There are some other versions that do admit absolute complementa-

tion and the universal set, for example a system due to Quine. But to avoid

(Continued)
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Alice Box: (Continued)

contradiction they must lose power in other respects; and they have other

features that tend to annoy working mathematicians and computer scien-

tists. For these reasons they are little used.

Alice: So in this book we are following the standard Zermelo-Fraenkel version?

Hatter: Yes. In practice, the loss of the universal set and absolute comple-

mentation are not really troublesome. Whenever you feel that you need to

have them, look for a non-universal set that is sufficiently large to contain as

elements all the items that you are currently working on, and use it as your

local universe for relative complementation.

1.5 Generalised Union and Intersection

It is time to go a little beyond the cosy world of ‘flat’ set theory, and look at some

constructions in which the elements of a set are themselves sets. We begin with the

operations of generalised union and intersection.

We know that when A1, A2 are sets then we can form their union A1[A2,

whose elements are just those items that are in at least one of A1, A2. Evidently,

we can repeat the operation, taking the union of that with another set A3. This

will give us (A1[A2)[A3, and we know from an exercise that this is independent of

the order of assembly, i.e. (A1[A2)[A3 ¼ A1[(A2[A3), and that its elements are

just those items that are elements of at least one of the three. So we might as well

write it without brackets.

Clearly we can do this any finite number of times, and so it is natural to consider

doing it infinitely many times. In other words, if we have sets A1, A2, A3,. . .we would

like to consider a set A1[A2[A3[. . . whose elements are just those items in at least

one of the Ai for i 2 Nþ. To make the notation more explicit, we write this set as
S
fAi : i 2Nþg or more compactly as

S
fAigi2Nþ or as

S
i2NþfAig.

Quite generally, if we have a collection fAi : i 2 Ig of sets Ai, one for each

element i of a fixed set I, we may consider the following two sets :

l

S
i2IfAig, whose elements are just those things that are elements of at least

one of the Ai for i 2 I. It is called the union of the sets Ai for i 2 I.

l

T
i2IfAig, whose elements are just those things that are elements of all of the

Ai for i 2 I. It is called the meet (or intersection) of the sets Ai for i 2 I.

The properties of these general (alias infinite) unions and intersections are

similar to those of two-place operations. For example, we have de Morgan and

distribution principles. These are the subject of the next exercise.
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Alice Box : Sets, collections, familes, classes

Alice: Why do you refer to fAi : i 2 Ig as as a collection, while its elements Ai,

and also its union
S

i2IfAig and its intersection
T

i2IfAig, are called sets ?

Hatter: The difference of words does not mark a difference of content. It is

merely to make reading easier. The human mind has difficulty in processing

phrases like ‘set of sets’, and even more difficulty with ‘set of sets of sets. . .’,

and the use of the word ‘collection’ helps keep us on track.

Alice: I think I have also seen the word ‘family’.

Hatter: Here we should be a little careful. Sometimes the term ‘family’ is used

rather loosely to refer to a set of sets. But strictly speaking, it is something

different, a certain kind of function. So better not to use that term until it is

explained in chapter 3.

Alice: And ‘class’?

Hatter: Back at the beginning of the twentieth century, this was used as a

synonym for ‘set’, by people such as Bertrand Russell. And some philoso-

phers continue to use it in that way. But in mathematics, it has acquired a

rather special technical sense, beyond the scope of this book. Roughly speak-

ing, a class is something like a set but so large that it cannot be admitted into

set theory without contradiction.

Alice: I’m afraid that I don’t understand.

Hatter: Don’t worry. There are no classes in this book. All you need to

remember is that at present you are dealing with sets; that sets of sets are

also called collections; and that families will be introduced in chapter 3.

EXERCISE 1.5.1 (WITH PARTIAL SOLUTION)

From the definitions of general union and intersection, prove the follow-

ing distribution and de Morgan principles. In the last two, complementa-

tion is understood to be relative to an arbitrary sufficiently large

universe.

(a) A\
S

i2IfBig ¼
S

i2I (A\Big (distribution of intersection over general

union)

(b) A[
T

i2IfBig ¼
T

i2I (A[Big (distribution of union over general

intersection)
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(c) {
S

i2IfAig ¼
T

i2If{Aig (de Morgan)

(d) {
T

i2IfAig ¼
S

i2If{Aig (de Morgan)

Solution to LHS � RHS part of (a): This is a simple ‘unpack, rearrange,

repack’ verification. Suppose x 2 LHS. Then x 2 A and x 2
S

i2IfBig.
From the latter, by the definition of general union, we know that x 2 Bi for

some i2 I. So for this i2 I we have x2A\Bi, and thus again by the definition

of general union, x 2 RHS as desired.

1.6 Power Sets

Our next construction is a little more challenging. Let A be any set. We may form

a new set, called the power set of A, written as P(A) or 2A, consisting of all (and

only) the subsets of A. In other words, P(A) ¼ fB : B � Ag. This may seem like a

rather exotic construction, but we will need it as early as chapter 2 when working

with relations.

EXERCISE 1.6.1 (WITH SOLUTION)

Let A ¼ f1,2,3g. List all the elements of P(A). Using the list, define P(A)

itself by enumeration. How many elements does P(A) have?

Solution: The elements of P(A) are (beginning with the smallest and

working our way up): ˘, f1g, f2g, f3g, f1,2g, f1,3g, f2,3g, f1,2,3g. Thus

P(A) ¼ f˘,f1g,f2g,f3g,f1,2g,f1,3g,f2,3g, f1,2,3gg. Counting, we see that

P(A) has 8 elements.

Comments: Do not forget the two ‘extreme’ elements of P(A): the smallest

subset A, namely ˘, and the largest one, namely A itself. Be careful with the

curly brackets. Thus 1, 2, 3 are not elements of P(A), but their singletons

f1g, f2g, f3g are. When defining P(A) by enumeration, don’t forget the

outer brackets enclosing the entire list of elements. These may seem like

pedantic points of punctuation, but if they are missed then you can get into

a dreadful mess.

All of the elements of P(A) are subsets of A, but some of them are also subsets

of others. For example, the empty set is a subset of all of them. This may be

brought out clearly by the following Hasse diagram, so called after the mathema-

tician who introduced it.
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{1, 2, 3}

{1, 3}
{1, 2}

{1}

{2, 3}

{3}
{2}

∅

Figure 1.4 Hasse diagram for P(A) when A ¼ f1, 2, 3g.

EXERCISE 1.6.2 (WITH PARTIAL SOLUTION)

Draw Hasse diagrams for the power sets of each of ˘, f1g, f1,2g,
f1,2,3g, f1,2,3,4g. How many elements does each of these power sets

have?

Partial solution: They have 1, 2, 4, 8 and 16 elements respectively.

There is a pattern here. Quite generally, if A is a finite set with n elements, its

power set P(A) has 2n elements. Here is a rough but very simple proof. Let

a1,. . .,an be the elements of A. Consider any subset B � A. For each ai there are

two possibilities: either ai 2 B or ai =2 B. That gives us 2.2. . . . .2 (n times), i.e. 2n

independent choices to determine which among a1,. . .,an are elements of B, i.e. 2n

possible identities for B.

This fact is very important for computing. Suppose that we have a way

of measuring the cost of a computation run in terms of, say, time of

calculation as a function of, say, the number of input items. It can happen

that this measure increases in proportion to 2n, i.e. is of the form k.2n for

some fixed k. This is known as exponential growth, and it is to be avoided

like the plague as it quickly leads to unfeasibly expensive calculations. For

example, suppose that such a process is dealing with an input of 10 items.

Now 210 ¼ 1024, which may seem reasonable. But if the input has 100 items

to deal with, we have 2100 steps to be completed, which would take a very

long time indeed.
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Logic Box: Truth-table for if

In this chapter we have made frequent use of if. . .then. . . (alias conditional)

statements and also iff (alias biconditional) ones. It is time to fulfill a promise to

make their meaning clear. In mathematics, they are used in a very simple way.

Like conjunction, disjunction, and negation, they are both truth-functional.

The truth-table for the conditional is as follows:

a b a!b

1 1 1

1 0 0

0 1 1

0 0 1

From this it is clear that a statement a!b is always true except when we

have the ‘disastrous combination’: a true and b false.

The biconditional a iff b (in longhand, a if and only if b, written a$b) is less

easily true and more easily false. Its table is:

a b a$b

1 1 1

1 0 0

0 1 0

0 0 1

Thus a$b is true whenever a and b have the same truth-value, and is false

whenever they have opposite truth-values. Comparing these tables, it is clear

that a$b is true whenever a!b and its converse b!a are both true.

Alice Box: The truth-table for the conditional

Alice: Well, at least you kept your promise! But I am not entirely

satisfied! I see why the ‘disastrous combination’ makes if a then b
false. But why do the other combinations all make it come out true?

The two statements a and b may have nothing to do with each other,

like ‘London is in France’ and ‘kangaroos are fish’. These are both false,

but it is strange to say that the statement ‘if London is in France then

kangaroos are fish’ is true.

(Continued)
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Alice Box: (Continued)

Hatter: Indeed, it is rather strange and, to be frank, in everyday life we use

if. . .then. . . in very subtle ways { much more complex than any such truth-table.

But in mathematics, we use the conditional in the simplest possible manner which,

moreover, turns out to underlie all the more complex ones. Here is an example that

may not entirely convince you,but might at least make the truth-table less strange.

You would agree, I hope, that all positive integers divisible by four are even.

Alice: Of course.

Hatter: Another way of saying the same thing is this: for every positive

integer n, if n is divisible by four then it is even.

Alice: Indeed.

Hatter: So for every choice that we make of a particular positive integer n, the

statement if n is divisible by four then it is even, comes out true. For example,

the following three are all true:

If 8 is divisible by 4 then it is even

If 2 is divisible by 4 then it is even

If 9 is divisible by 4 then it is even:

But the first of these corresponds to the top row of our truth-table (both

components true), the second corresponds to the third row (a false, b true),

and the last corresponds to the fourth row (both components false), while in

each of these three cases the conditional is true.

Alice: I’ll have to think about this. . .

Hatter: . . .and think about the following example of Dov Gabbay. A shop

hangs a sign in the window saying ‘if you buy a computer, then you get a free

printer’. The relevant government inspectorate suspects the shop of false

advertising, and sends agents disguised as customers into the shop to make

purchases. How many ways are there of pinning a false advertising charge on

the manager?

1.7 Some Important Sets of Numbers

In this chapter we already came across the set Nþ ¼ f1,2,3,. . .g of all positive

integers. Some other number sets that we will frequently need to refer to, in

examples and in general theory, are the following.

1.7 Some Important Sets of Numbers 25



N¼Nþ [f0g, i.e. the set consisting of zero and all the positive integers. This is

called the set of the natural numbers. Warning: Some authors use the same

term to refer to the positive integers only. Be wary when you read.

Z ¼ f0,�1, �2, �3,. . .g, the set of all integers (positive, negative and zero).

Z{¼ f. . .,{3, {2, {1g ¼ ZnN, the set of all negative integers.

Q¼fp/q : p,q2Z and q 6¼ 0g, the set of all rational numbers (positive, negative

and zero).

R ¼ the set of all real numbers, also representable as the set of all numbers of

the form p þ d1d2. . . where p 2 Z and d1d2. . . is an ending or unending

decimal (series of digits from 0 to 9).

We will often need to refer to these sets, and assume at least a little familarity

with them, especially the first five.

FURTHER EXERCISES

1.1. Boolean operations on sets

We define the operation AþB of symmetric difference (sometimes known as

disjoint union) by the following rule: AþB ¼ (AnB)[(BnA). Notations

vary: often � is used for this operation, sometimes �.

(a) Show that for any x, x 2AþB iff x is an element of exactly one of A, B.

(b) Draw a Venn diagram for the operation.

(c) Show that AþB � A[B

(d) Show that AþB is disjoint from A\B

(e) Show that AþB ¼ (A[B)n(A\B)

(f) For each of the following properties of [, check out whether or not it

also holds for þ, giving a proof or a counterexample as appropriate: (i)

commutativity, (ii) associativity, (iii) distribution of \ over þ, (iv)

distribution of þ over \ .

(g) Express {(AþB) using union, intersection, complement.

(h) We have seen that each of intersection, union and difference corre-

sponds to a truth-functional logical connective. To what connective

does symmetric difference correspond? Draw its truth-table. Hint:

Read again the Logic Box on disjunction.
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1.2. Counting principles for union and intersection

Let A, B be finite sets. We write #(A), #(B) for the number of elements

that each contains.

(a) Show that always #(A[B) � #(A) þ #(B).

(b) Give an example to show that sometimes #(A[B) < #(A) þ #(B).

(c) Show that when A, B are disjoint then #(A[B) ¼ #(A) þ #(B).

(d) Show quite generally that when A, B are any finite sets (not necessarily

disjoint), then #(A[B) ¼ #(A) þ #(B) { #(A\B). This is known as

the rule of inclusion and exclusion. Despite its simplicity, it will be one

of the two fundamental principles of the chapter on combinatorics.

(e) Show that #(A\B)�min(#(A), #(B)). Here, min(m,n) is whichever

is the lesser of the integers m,n.

(f) Give an example to show that sometimes #(A\B)<min(#(A), #(B)).

(g) Formulate and verify a necessary and sufficient condition for the

equality #(A\B) ¼ min(#(A), #(B)) to hold.

1.3. Counting principles for complements

(a) Using the same notation as in the preceding exercise, show that

#(AnB) ¼ #(A) { #(A\B).

(b) Use this to show that when B � A then #(AnB) ¼ #(A) { #(B).

(c) Give an example showing that the equality in (b) may fail when we

drop the condition B � A.

1.4 Generalized union and intersection

(a) Let fAigi2I be any collection of sets. Show that for any set B we have

(i)
S
fAigi2I�B iff Ai�B for every i2I, (ii) B�

T
fAigi2I iff B�Ai for

every i2I.

(b) Find a collection fAigi2I of non-empty sets with each Ai�Aiþ1 but with
T
fAigi2I empty. Hint: You might as well look among the subsets of N.

1.5. Power sets

(a) Show that whenever A � B then P(A) � P(B).

(b) True or false? P(A\B) ¼ P(A)\P(B). If true, prove it; if false, give a

counterexample.

(c) True or false? P(A[B) ¼ P(A)[P(B). If true, prove it; if false, give a

counterexample.
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2
Comparing Things: Relations

Chapter Outline

Relations play an important role in computer science, both as tools of analysis and as

instruments for representing computational structures such as databases. In this

chapterwe introduce thebasic conceptsyou needtomaster inorder to workwith them.

We begin with the notions of an ordered pair (and more generally, ordered

n-tuple) and the Cartesian product of two more or more sets. We then consider

operations on relations, notably those of forming the converse, join, and composi-

tion of relations, as well as some other operations that combine both relations and

sets, notably those of the image and the closure of a set under a relation.

We also explore two of the main jobs that relations are asked to carry out: to

classify and to order. For the former, we explain the notion of an equivalence

relation (reflexive, transitive, symmetric) over a set and how it corresponds to the

notion of a partition of the set. For the latter, we look first of all at several kinds of

reflexive order, and then at their strict parts.

2.1 Ordered Tuples, Cartesian Products,
Relations

What do the following have in common? One car overtaking another, a boy loving a

girl, one tree being shadier than another, an integer dividing another, a point lying

between two others, and a student exchanging one book for another with a friend.

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 2, � Springer-Verlag London Limited 2008
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They are all examples of relations involving at least two items { in some

instances three (one point between two others), four (the book exchange), or

more. Often they involve actions, intentions, the passage of time, and causal

connections; but in mathematics and computer science we abstract from all

those features and work with a very basic, stripped-down concept. To explain

what it is, we begin with the notions of an ordered tuple and Cartesian product.

2.1.1 Ordered Tuples

Recall from the preceding chapter that when a set has exactly one element, it is

called a singleton. When it has exactly two distinct elements, it is called a pair.

For example, the set f7,9g is a pair, and it is the same as the pair f9,7g. We have

f7,9g ¼ f9,7g because the order is irrelevant: the two sets have exactly the same

elements.

An ordered pair is like a (plain, unordered) pair except that order matters. To

highlight this, we use a different notation. The ordered pair whose first element is

7 and whose second element is 9 is written as (7,9) or, in older texts, as<7,9>. It is

distinct from the ordered pair (9,7) although they have exactly the same elements:

(7,9) 6¼ (9,7), because the elements are considered in a different order.

Abstracting from this example, the criterion for identity of ordered pairs is as

follows: (x1,x2) ¼ (y1,y2) iff both x1 ¼ y1 and x2 ¼ y2. This contrasts with the

criterion for identity of plain sets: fx1,x2g ¼ fy1,y2g iff the left and right hand sets

have exactly the same elements, which (it is not difficult to show) holds iff either

(x1 ¼ y1 and x2 ¼ y2) or (x1 ¼ y2 and x2 ¼ y1).

More generally, the criterion for identity of two ordered n-tuples (x1,x2,. . .,xn)

and (y1,y2,. . .,yn) is as you would expect: (x1,x2,. . .,xn)¼ (y1,y2,. . .,yn) iff xi¼ yi for

all i from 1 to n.

Alice Box: Ordered pairs

Alice: I have a technical problem here. Aren’t there other ways in which plain

pairs can be identical? For example, when x1¼ y1 and x2¼ y1 and y2¼ x1 then

the two sets fx1,x2g and fy1,y2g have exactly the same elements, and so are

identical.

Hatter: Sure they are. But then, since x1 ¼ y1 and x2 ¼ y1 we have x1 ¼ x2, so

since y2 ¼ x1 we have x2 ¼ y2. Thus x1 ¼ y1 and x2 ¼ y2, so that the situation

that you are considering is already covered by the first of the two cases that

were mentioned in the definition.

(Continued)

30 2. Comparing Things: Relations



Alice Box: (Continued)

Alice: OK. But I also have a philosophical problem. Isn’t there something

circular in all this? You promised that relations will be used to build a theory

of order, but here you are defining the concept of a relation by using the notion

of an ordered pair, which already involves the concept of order!

Hatter: A subtle point, and a good one! But I would call it a spiral rather than

a circle. We need just a rock-bottom kind of order { no more than the idea of

one thing coming before another { in order to understand what an ordered

pair is. From that we can build a very sophisticated theory of the various

kinds of order that relations can create.

EXERCISE 2.1.1

Check in detail the Hatter’s claim that fx1,x2g ¼ fy1,y2g iff either (x1 ¼ y1

and x2 ¼ y2) or (x1 ¼ y2 and x2 ¼ y1). Hint: You may find it helps to break

your argument into cases.

2.1.2 Cartesian Products

With this in hand, we can introduce the notion of the Cartesian product of two

sets. If A, B are sets then their Cartesian product, written A�B and pronounced

‘A cross B’ or ‘A by B’, is defined as follows:

A� B ¼ fða; bÞ : a 2 A and b 2 Bg

In English, A�B is the set of all ordered pairs whose first term is in A and

whose second term is in B. When B ¼ A, so that A�B ¼ A�A it is customary to

write it as A2, calling it ‘A squared’.

A very simple concept, but be careful { it is also easy to trip up! Take note of

the and in the definition, but be careful not to confuse Cartesian products with

intersections. For example, if A, B are sets of numbers, then A\B is also a set of

numbers; but A�B is a set of ordered pairs of numbers.

EXERCISE 2.1.2 (WITH SOLUTION)

Let A ¼ fJohn, Maryg and B ¼ f1,2,3g, C ¼ ˘. What are A�B, B�A,

A�C, C�A, A2, B2? Are any of these identical with others? How many

elements in each?
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Solution:

A�B ¼ f(John,1), (John,2), (John,3), (Mary,1), (Mary,2), (Mary,3)g

B�A ¼ f(1,John), (2,John), (3,John), (1,Mary), (2,Mary), (3,Mary)g

A�C ¼ ˘

C�A ¼ ˘

A2 ¼ f(John,John), (John, Mary), (Mary,John), (Mary, Mary)g

B2 ¼ f(1,1), (1, 2), (1,3), (2,1), (2, 2), (2,3), (3,1), (3, 2), (3,3)g

Of these, A�C¼C�A, but that is all; in particular A�B 6¼B�A. Counting

the elements: #(A�B) ¼ 6 ¼ #(B�A), #(A�C) ¼ 0 ¼ #(C�A),

#(A2) ¼ 4, #(B2) ¼ 9.

Comment: Note that also A�B ¼ f(John,1), (Mary,1), (John,2),

(Mary,2), (John,3), (Mary,3)g. Within the curly brackets we are enumer-

ating the elements of a set, so we can write them in any order we like; but

within the round brackets we are enumerating the terms of an ordered pair

(or ordered n-tuple), so there the order is vital.

The operation takes its name from Rene� Descartes who, in the seventeenth

century, made use of the Cartesian product R2 of the set R of all real numbers.

His seminal idea was to represent each point of a plane by an ordered pair (x,y) of real

numbers, and use this representation to solve geometric problems by algebraic

methods. The set R2 is called the Cartesian plane.

From the exercise, you may already have guessed a general counting principle

for the Cartesian products of finite sets: #(A�B) ¼ #(A).#(B) where the dot

stands for ordinary multiplication. Here is a rough proof. Let #(A) ¼ m and

#(B)¼ n. Fix any element a2A. Then there are n different pairs (a,b) with b2B.

And when we fix a different a0 2A, then the n pairs (a0,b) will all be different from

the pairs (a,b), since they differ on their first terms. Thus there are nþ nþ . . .þ n

(m times), i.e. m .n pairs altogether in A�B.

Thus although the operation of forming the Cartesian product of two sets is not

commutative (i.e. we may have A�B 6¼ B�A), the operation of counting the

elements of the Cartesian product is commutative, i.e. always #(A�B)¼#(B�A).

EXERCISE 2.1.3 (WITH PARTIAL SOLUTION)

(a) Show that when A � A0 and B � B 0 then A�B � A0�B 0.

(b) Show that when both A 6¼ ˘ and B 6¼ ˘ then A�B ¼ B�A iff A ¼ B
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Solution to (b): Suppose A 6¼˘ and B 6¼˘. We need to show that A�B ¼
B�A iff A ¼ B. We do this in two parts.

First, we show that if A ¼ B then A�B ¼ B�A. Suppose A ¼ B; we

need to show A�B¼B�A. By the supposition, A�B¼A2 and also B�A¼
A2 so that A�B ¼ B�A as desired.

Next, we show the converse, that if A�B¼B�A then A¼B. The easiest

way to do this is by showing the contrapositive: if A 6¼ B then A�B 6¼ B�A.

Suppose A 6¼ B. Then either A 6� B or B 6� A. We consider the former case;

the latter is similar. Since A 6� B there is an a 2A with a =2B. By supposition,

B 6¼˘, so there is a b 2 B. Thus (a,b) 2 A�B but since a =2B, (a,b) =2 B�A.

Thus A�B 6� B�A as desired.

Logic Box: Proof of ‘iff’ statements, and proof by contraposition

The solution to Exercise 2.1.3(b) is instructive in several respects. It uses a

‘divide and rule’ strategy, breaking the problem down into component parts,

and tackling them patiently one by one. Within each part (or sub-problem),

we make an appropriate supposition and work to the corresponding goal. In

this way, a quite complex problem can often be reduced to a collection of very

simple ones.

In particular, in order to prove an if and only if statement, it is often

convenient to do it in two parts: first prove the if in one direction, and then

prove it in the other. As we saw in the preceding chapter, these are not the

same; they are called converses of each other.

Finally, the example also illustrates the process of proving by contra-

position. Suppose we want to prove a statement if a then b. As mentioned

in Chapter 1, the most straightforward way of tackling this is to suppose a
and drive towards b. But that does not always give the most transparent

proof. Sometimes it is better to suppose not-b and head for not-a. That is what

we did in the example: to prove that if A�B ¼ B�A then A ¼ B for non-

empty sets A,B, we supposed A 6¼ B and showed A�B 6¼ B�A.

Why is this method of proof legitimate? Because the two conditionals

a!b and :b!:a are equivalent, as can be seen by examining their truth-

tables.

How can it help? Often, the supposition A 6¼B gives us something to ‘grab

hold of’. In our example, it tells us that there is an a with a 2 A, a =2B (or

conversely); we can then consider a particular such a, and start reasoning

about it. This pattern occurs quite often.
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2.1.3 Relations

Let A,B be any sets. A binary relation from A to B is defined to be any subset of

the Cartesian product A�B. It is thus any set of ordered pairs (a,b) such a2A and

b 2 B. A binary relation is therefore fully determined by the ordered pairs that it

covers. It does not matter how these pairs are presented or described. It is

customary to use R, S, . . . as symbols standing for relations. As well as saying

that the relation is ‘from A to B’, one also says that it is ‘over A�B’.

From the definition, it follows that in the case that A ¼ B, a binary relation

from A to A is any set of ordered pairs (a,b) such both a,b 2A. It is thus a relation

over A2, but informally we often abuse language a little and describe it as a

relation over A.

Evidently, the notion may be generalised to any number of places. Let

A1,. . .,An be sets. An n-place relation over A1�. . .�An is defined to be any subset

of A1�. . .�An. In other words, it is any set of n-tuples (a1,. . .,an) with each ai2Ai.

In this chapter we will be concerned mainly with binary relations, and when

there is no ambiguity will speak of them simply as relations.

EXERCISE 2.1.4 (WITH SOLUTION)

Let A, B be as in Exercise 2.1.2.

(a) Which of the following are (binary) relations from A to B?

(i) f(John,1), (John,2)g

(ii) f(Mary,3), (John,Mary)g

(iii) f(Mary,2), (2,Mary)g

(iv) f(John,3), (Mary,4)g

(v) (fMary,1g, fJohn,3g)

(b) What is the largest relation from A to B? What is the smallest?

(c) Identify (by enumeration) three more relations from A to B.

(d) How many relations are there from A to B?

Solution:

(a) Only (i) is a relation from A to B. (ii) is not, because Mary is not in B.

(iii) is not, because 2 is not in A. (iv) is not, because 4 is not in B. (v) is

not, because it is a an ordered pair of sets, not a set of ordered pairs.
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(b) A�B is the largest, ˘ is the smallest, in the sense that ˘�R�A�B for

every relation R from A to B.

(c) For brevity, we can choose three singleton relations: f(John,1)g,
f(John,2)g, f(John,3)g.

(d) Since #(A)¼ 2 and #(B)¼ 3, #(A�B)¼ 2.3¼ 6. From the definition

of a relation from A to B it follows that the set of all relations from A to

B is just P(A�B), and by a principle in the chapter on sets, #(P(A�B))

¼ 2#(A�B) ¼ 26 ¼ 64.

When R is a relation from A to B, we call the set A a source of the relation, and

B a target. Sounds simple enough, but care is advised. As already noted in an

exercise, when A � A0 and B � B 0 then A�B � A0�B 0, so when R is a relation

from A to B then it is also a relation from A0 to B 0. Thus the source and target of

R, in the above sense, are not unique: a single relation will have indefinitely many

sources and targets.

For this reason, we also need terms for the least possible source and target of

R. We define the domain of R to be the set of all a such that (a,b) 2 R for some b,

writing briefly dom(R) ¼ fa: there is a b with (a,b) 2 Rg. Likewise we define

range(R) ¼ fb: there is an a with (a,b) 2 Rg. Clearly, whenever R is a relation

from A to B then dom(R) � A and range(R) � B.

Warning: You may occasionally see the term ‘codomain’ contrasting with

‘domain’. But care is needed, as the term is sometimes used broadly for ‘target’,

sometimes more specifically for ‘range’. In this book we will follow a fairly

standard terminology, with domain and range defined as above, and source,

target for any supersets of them.

EXERCISE 2.1.5

(a) Consider the relation R ¼ f(1,7), (3,3), (13,11)g and the relation

S ¼ f(1,1), (3,11), (13,12), (15,1)g. Identify dom(R), range(R),

dom(S), range(S).

(b) The identity relation IA over a set A is defined by putting IA ¼ f(a,a) :

a 2 Ag. Identify dom(IA) and range(IA).

(c) Identify dom(A�B), range(A�B).

Since relations are sets (of ordered pairs or tuples), we can apply to them all

the concepts that we developed for sets. In particular, it makes sense to speak of

one relation R being included in another relation S: every tuple that is an element

of R is an element of S. In this case we also say that R is a subrelation of S.
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Likewise, it makes sense to speak of the empty relation: it is the relation that has

no elements, and it is unique. It is thus the same as the empty set, and can be

written ˘.

EXERCISE 2.1.6

(a) Use the definitions to show that (i) the empty relation is a subrelation

of every relation, (ii) the empty relation has no proper subrelations.

(b) Identify dom(˘), range(˘).

(c) What would it mean to say that two relations are disjoint? Give an

example of two disjoint relations over a small finite set A.

2.2 Tables and Digraphs for Relations

In mathematics, rigour is important, but so is intuition. The two should go hand

in hand. One way of strengthening one’s intuition is to use graphic representa-

tions. This is particularly so in the case of binary relations. For sets in general we

used Euler and Venn diagrams; for the more specific case of relations, tables and

arrow diagrams are helpful.

2.2.1 Tables for Relations

Let’s go back to the sets A ¼ fJohn, Maryg and B ¼ f1,2,3g of earlier exercises.

Consider the relation R ¼ f(John,1), (John,3), (Mary,2), (Mary,3)g. How might

we represent R by a table?

We draw a table with two rows and three columns, for the elements of A and B

respectively. Each cell in this table is uniquely identified by its coordinate (a,b)

where a is the element for the row and b is the element for the column. Write in the

cell a 1 (for ‘true’) or a 0 (for ‘false’) according as the ordered pair (a,b) is or is not

an element of the relation. For the R chosen above, this gives us the following

table.

Table 2.1 Table for a relation.

R 1 2 3

John 1 0 1

Mary 0 1 1
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Tabular representations of relations are particularly useful when dealing

with databases, because good software is available for writing and manipulating

them. When a table has the same number of columns as rows, geometrical

operations such as folding along the diagonal can also reveal interesting structural

features.

EXERCISE 2.2.1

(a) Let A ¼ f1,2,3,4g. Draw tables for each of the following relations over

A2: (i) <, (ii) �, (iii) ¼, (iv) ˘, (v) A2.

(b) In each of the four tables, draw a line from the top left cell (1,1) to the

bottom right cell (4,4). This is called the diagonal of a relation over A2.

Comment on the contents of the diagonal in each of the four tables.

(c) Imagine folding the table along the diagonal (or cut it out and fold it).

Comment on any symmetries that become visible.

2.2.2 Digraphs for Relations

Another way of representing binary relations, less suitable for software imple-

mentation but friendly to humans, is by means of arrow diagrams known as

directed graphs or more briefly digraphs. The idea is simple, at least in the finite

case. Given a relation from A to B, mark a point for each element of A[B, labelling

it with a name if desired. Draw an arrow from one point to another just when the

first stands in the relation to the second. When the source A and target B of the

relation are not the same, it can be useful to add into the diagram circles for

the sets A and B.

In the example considered for the table above, the digraph comes out as

follows.

John

Mary

1

2

3

A B

Figure 2.1 Diagram for a relation.
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The Hasse diagram between the subsets of f1,2,3g that we presented in

Chapter 1 can be seen as a digraph for the relation of being immediately

included in. This holds between a set B and a set C iff B � C but there is no X

with B � X � C. However, the Hasse diagram uses plain lines rather than

arrows, with the convention that these are always read with subset below and

superset above.

Given a Hasse diagram for a relation, we can use it to read off its reflexive and

transitive closure. In particular, given the Hasse diagram for the relation of B

being immediately included in C, we can read off the relation of B being included in

C: it holds iff there is an ascending path from B to C (including the one-element

path). This is much more economical than drawing a digraph for the entire

relation of inclusion.

EXERCISE 2.2.2

Take from Chapter 1 the Hasse diagram for immediate inclusion between

subsets of the set A ¼ f1,2,3g, and compare it with the digraph for the

entire relation of inclusion. How many links in each?

Diagrams are valuable tools to illustrate situations and stimulate intuitions.

They can often help us think up counterexamples to general claims, and they can

sometimes be used to illustrate a proof, making it much easier to follow. However,

they have their limitations. In particular, it should be remembered that a diagram

can never itself constitute a proof of a general claim.

2.3 Operations on Relations

Since relations are sets, we can carry out on them all the Boolean operations

for sets that we learned in the preceding chapter, provided we keep track of

the sources and targets. Thus, if R and S are relations from the same source

A to the same target B, their intersection R\ S, being the set of all ordered

pairs (x,y) that are simultaneously elements of R and of S, will also be a

relation from A to B. Likewise for the union R[S, and also for complement

{R with respect to A�B. Note that just as for sets, {R is really a difference

(A�B){R and so depends implicitly on the source A and target B as well as

on R itself.

As well as the Boolean operations, there are others that arise only for relations.

We describe some of the most important ones.
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2.3.1 Converse

The simplest is that of forming the converse (alias inverse) R{1 of a relation. Given a

relation R, we define R{1 to be the set of all ordered pairs (b,a) such that (a,b) 2 R.

Warning: Do not confuse this with complementation! There is nothing nega-

tive about conversion: we are simply reversing the direction of the relation. The

complement of loves is doesn’t love, but its converse is loved by.

EXERCISE 2.3.1 (WITH SOLUTIONS)

(a) Let A be the set of natural numbers. What are the converses of the

following relations over A: (i) less than, (ii) less than or equal to, (iii)

equal to.

(b) Let A be a set of people. What are the converses of the following

relations over A: (i) being a child of, (ii) being a descendant of, (iii)

being a daughter of, (iv) being a brother of, (v) being a sibling of, (vi)

being a husband of.

Solutions:

(a) (i) greater than, (ii) greater than or equal to, (iii) equal to.

(b) (i) being a parent of, (ii) being an ancestor of, (iii) having as a daughter,

(iv) having as a brother, (v) being a sibling of, (vi) being a wife of.

Comments: In group (a) we already have examples of how the converse of a

relation may be disjoint from it, overlap with it, or be identical with it.

Some of the examples in group (b) are a little tricky. Note that the

converse of being a brother of is not being a brother of: when a is a brother of

b, b may be female and so a sister of a.

Sometimes, ordinary language has a single word for a relation and

another single word for its converse. This is the case for (i) (child/parent)

(ii) (ancestor/descendant) and (iii) (husband/wife). But it is not always so:

witness (iii) and (iv) where we have to use special turns of phrase: daugh-

ter/having as daughter, brother/having as brother.

EXERCISE 2.3.2

(a) What does the converse of a relation look like from the point of view of a

digraph for the relation? And from the point of view of a table for it?
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(b) Show that dom(R{1) ¼ range(R) and range(R{1) ¼ dom(R).

(c) Show that (i) (R{1){1 ¼ R, (ii) (R\ S){1 ¼ R{1\ S{1, (iii) (R[S){1 ¼
R{1[S{1. Compare these equalities with those for complementation.

Alice Box: Converse of an n-place relation

Alice: Does the notion of conversion make sense for relations with more than

two places?

Hatter: It does, but there we have not just one operation but several. For

simplicity, take the case of a three-place relation R, whose elements are ordered

triples (a,b,c). Then there is an operation that converts the first two, giving

triples (b,a,c), and an operation converting the last two, giving triples (a,c,b).

Alice: And one switching the first and the last, giving triples (c,b,a)?

Hatter: Indeed. However once we have some of these operations we can get

others by iterating them. For example, your operation may be obtained by

using the first two as follows: from (a,b,c) to (b,a,c) to (b,c,a) to (c,b,a), using

the first, second, and first operations. We could also get the first operation,

say, by iterating the second and third...

Alice: Stop there, I’ve got the idea.

2.3.2 Join of Relations

Imagine that you are in the personnel division of a firm, and that you are in charge

of a database recording the identity numbers and names of employees. Your

colleague across the corridor is in charge of another database recording their

names and telephone extensions. Each of these databases may be regarded as a

binary relation. In effect, we have a large set A of allowable identity numbers (e.g.

any six digit figure), a set B of allowable names (e.g. any string of at most twenty

letters and spaces, with no space at beginning or end and no space immediately

following another one), and a set C of allowable telephone extension numbers (e.g.

any figure of exactly four digits). Your database is a subset R of A�B, your

colleague’s database is a subset S of B�C; they are thus both relations. These

relations may have special properties. For example, it may be required that R

cannot associate more than one name with any given identity number, although S

may legitimately associate more than one telephone extension to a given name.

We will not bother with these special properties at the moment, leaving them to

the chapter on functions.
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The manager may decide to merge these two databases into one, thus econ-

omising on the staff needed to maintain them and liberating one of you for other

tasks (or for redundancy). What would the natural merging be? A three-place

relation over A�B�C consisting of all those triples (a,b,c) such that (a,b)2R and

(b,c) 2 S. This is clearly an operation on relations, taking two binary relations

with a common middle set (target of one, source of the other) to form a three-place

relation. The resulting relation/database gives us all the data of the two compo-

nents, with no loss of information.

Of course, in practice, databases make use of relations with more than just two

places, and the operation that we have described may evidently be generalised to

cover them. Let R be a relation over A1�. . .�Am�B1�. . .�Bn and let S be a relation

over B1�. . .�Bn� C1�. . .�Cp. We define join of R and S, written join(R,S), to be

the set of all those (mþnþp)-tuples (a1,. . .,am,b1,. . .,bn,c1,. . .,cp) such that

(a1,. . .,am,b1,. . .,bn) 2 R and (b1,. . .,bn,c1,. . .,cp) 2 S.

Another terminological warning: database theorists (and this book) call this

operation ‘join’; set theorists and algebraists sometimes use the same word as a

synonym for the simple union of sets, as noted in the preceding chapter.

By combining operations of join and conversion, one may do quite a lot of

manipulation. These operations never diminish the arity (i.e. number of places) of

the relations: conversion leaves the arity unchanged, join increases it. But in

database theory there are several further operations that cannot be obtained

from conversion and join alone. One is projection. Suppose R �
A1�. . .�Am�B1�. . .�Bn is a database. We may project R onto its first m places,

forming a relation whose elements are just those m-tuples (a1,. . .,am) such that

there are b1,. . .,bn with (a1,. . .,am,b1,. . .,bn) 2 R.

Another database operation is selection (alias restriction in the language of set

theorists and algebraists). Again, let R�A1�. . .�Am�B1�. . .�Bn be a database,

and let C1,. . .,Cm be subsets of A1,. . .,Am respectively (i.e. Ci�Ai for each i�m).

We may select (or restrict the relation to) the subsets by taking its elements to be

just those (mþ n)-tuples (c1,. . .,cm,b1,. . .,bn) such that (c1,. . .,cm,b1,. . .,bn) 2 R

and each ci 2 Ci.

Here we have selected subsets from the first m arguments. We could equally

well have selected from the last n, or from any others. In database contexts, the

subsets Ci will often be singletons fcig.

EXERCISE 2.3.3

Formulate the definition of selection (alias restriction) for the special case

that we have a two-place relation over A�B and we restrict (i) just A, (ii)

both A and B.
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2.3.3 Composition of Relations

While the join operation is immensely useful for database manipulation, it does not

occur very often in everyday language. But there is a variant of it that children learn

at a very young age { as soon as they can recognise members of their extended

family. It was first studied in the nineteenth century by Augustus de Morgan who

called it ‘relative product’; nowadays it is usually called ‘composition’.

Suppose we are given two relations R�A�B and S�B�C, with the target of

the first the same as the source of the second. We have already defined their join as

the set of all triples (a,b,c) such that (a,b)2R and (b,c)2 S. But we can also define

their composition S �R as the set of all ordered pairs (a,c) such that there is some x

with both (a,x) 2 R and (x,c) 2 S.

For example, if F is the relation of ‘a father of’ and P is the relation of ‘a parent

of’, then P �F is the relation consisting of all ordered pairs (a,c) such that there is

some x with (a,x)2F and (x,c)2P, i.e. all ordered pairs (a,c) such that for some x,

a is a father of x and x is a parent of c. It is thus the relation of being ‘a father of a

parent of’, i.e. ‘a grandfather of’.

Alice Box: Notation for composition of relations

Alice: That feels funny, the wrong way round. Wouldn’t it be easier to write

the composition P �F with the letters the other way round, so that they follow

the same order as they are mentioned in the phrase ‘a father of a parent of’,

which is also the order of occurrence of the predicates in the phrase ‘(a,x) 2 F

and (x,c) 2 P’ of the definition?

Hatter: Indeed it would be easier, and most of the earlier authors working in

the theory of relations did it the way that you suggest.

Alice: Why the switch?

Hatter: To bring it into agreement with the way we usually do things in the

theory of functions. As you will see in the next chapter, a function can be

defined as a special kind of relation, and notions such as composition for

functions turn out to be the same as for relations; so it is best to use the same

notation. In this case, the notation for functions won out. A pity, as I am a

relations man myself.

Alice: I’m afraid that I’ll always mix them up!

Hatter: The best policy is to commit the definition to memory, and write it

down before each exercise involving composition of relations.
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Logic Box: Existential quantifier

The definition of the composition of two relations makes essential use of the

phrase ‘there is an x such that . . .’. This is known as the existential quantifier, and

is written 9x(. . .). For example, ‘There is an x with both (a,x)2R and (x,c)2 S is

written as 9x((a,x)2R ^ (x,c)2S), or more briefly as 9x(Rax^Sxc).

Spoken language does not contain variables; nor does written language

outside mathematical contexts. But it manages to express existential quanti-

fication in other ways. For example, if we say ‘Some composers are poets’ we

are not using a variable, but we are in effect saying that there is an x such that

x is both a composer and a poet, which the set-theorist would write as

9x(x2C^x2P) and the logician would write as 9x(Cx^Px). Pronouns can

also be used like variables. For example, when we say ‘If there is a free

place, I will reserve it’, the ‘it’ is doing the work of a variable. However,

once we begin to formulate more complex statements involving several quan-

tifications, it can be difficult to be precise without using variables explicitly.

The existential quantifier 9 has its own logic, which we will describe later,

along with the logic of its companion, the universal quantifier 8. In the

meantime, we will simply adopt the notation 9x(. . .) as a convenient short-

hand for longer English ‘there is an x such that . . .’, and likewise 8x(. . .) to

abbreviate ‘for every x, . . . holds’.

EXERCISE 2.3.4 (WITH SOLUTION)

Let A be the set of people, and P, F, M, S, B the relations over A of ‘parent

of’, ‘father of’, ‘mother of’, ‘sister of’ and ‘brother of’ respectively. Describe

exactly the following relative products. (a) P �P, (b) M �F, (c) S �P,

(d) B �B. Warnings: (1) Be careful about order. (2) In some cases there

will be a handy word in English for just the relation, but in others it will

have to be described in a more roundabout (but still precise) way.

Solution and remarks:

(a) P �P¼ ‘grandparent of’. Reason: a is a grandparent of c iff there is an x

such that a is a parent of x and x is a parent of c.

(b) M �F ¼ ‘maternal grandfather of’. Reason: a is a maternal grand-

father of c iff there is an x such that a is a father of x and x is a mother

of c. Comments: Two common errors here. (1) Getting the order

wrong. (2) Rushing to the answer ‘grandfather of’, since a father of
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a mother is always a grandfather. But there is another way of being a

grandfather, namely by being a father of a father, so that relation is

too broad.

(c) S �P ¼ ‘parent of a sister of’. Reason: a is a parent of a sister of c iff

there is an x such that a is a parent of x and x is a sister of c. Comments:

This one is tricky. When there is an x such that a is a parent of x and x is

a sister of c, then a is also a parent of c, which tempts one to rush into

the answer ‘parent of’. But that relation is also too broad, because a

may also be a parent of c when c has no sisters! English has no single

word for the relation S �P; we can do no better than use a circumlocu-

tion such as ‘parent of a sister of’.

(d) B �B ¼ ‘brother of a brother of’. Comments: Again, English has no

single word for the relation. One is tempted to say that B �B ¼
‘brother’. But that answer is both too broad (in one respect) and too

narrow (in another respect). Too broad because a may be a brother of c

without being a brother of a brother x of c: there may be no third

brother to serve as the x. Too narrow because a may be a brother of x

and x a brother of c, without a being a brother of c, for a may be the

same person as c! In this example, again, we can do little better than use

the phrase ‘brother of a brother of’.

Different languages categorize family relations in different ways, and transla-

tions are often only approximate. There may be a single term for a certain

complex relation in one language, but none in another. Even within a single

language, there are sometimes ambiguities. In English, for example, let P be the

relation of ‘parent of’, and S the relation of ‘sister of’. Then P � S is the relation of

‘being a sister of a parent of’. This is certainly a subrelation of the relation of being

an aunt of, but are the two relations identical? That depends on whether you

include aunts by marriage, i.e. whether you regard the wives of the brothers of

your parents as your aunts. If you do include them under the term, then P
8S is a

proper subrelation of the relation of aunt. If you don’t include them, then it is the

whole relation, i.e. P � S ¼ ‘aunt’.

2.3.4 Image

The last operation that we consider in this section records the action of a relation

on a set. Let R be any relation from set A to set B, and let a 2 A. We define the

image of a under R, written R(a), to be the set of all b 2 B such that (a,b) 2 R.
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EXERCISE 2.3.5 (WITH PARTIAL SOLUTION)

(a) Let A¼ fJohn, Mary, Peterg and let B¼ f1,2,3g. Let R be the relation

f(John,1), (Mary,2), (Mary,3)g. What are the images of John, Mary,

and Peter under R?

(b) Represent these three images in a natural way in the digraph for R.

(c) What is the image of 9 under the relation � over the natural

numbers?

Solution to (a) and (c):

(a) R(John) ¼ f1g, R(Mary) ¼ f2,3g, R(Peter) ¼ ˘.

(c) �(9) ¼ fn 2N : 9 � ng.

It is useful to ‘lift’ this notion from elements of A to subsets of A. If X�A then

we define the image of X under R, written R(X), to be the set of all b 2B such that

(x,b) 2 R for some x 2 X. In shorthand notation, R(X) ¼ fb 2 B : 9x 2 X,

(x,b) 2 Rg.

EXERCISE 2.3.6

(a) Let A, B, R be as in the preceding exercise. Identify R(X) for each one of

the eight subsets X of A.

(b) What are the images of the following sets under the relation� over the

natural numbers? (i) f3,12g, (ii) f0g, (iii) ˘, (iv) the set of all evens, (v)

the set of all odds, (vi) N.

(c) Let P (for predecessor) be the relation defined by putting (a,x) 2 P

iff x ¼ aþ1. What are the images of each of the above six sets

under P?

(d) Identify the converse of the relations � and P over the natural

numbers, and the images of the above six sets under these converse

relations.

It can happen that the notation R(X) for the image of X � A under R is

ambiguous. This will be the case when the set A already has among its elements

certain subsets X of itself. For this reason, some authors write R‘‘(X) instead.

However, we will rarely be dealing with such sets, and will stick with the simpler

notation.
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2.4 Reflexivity and Transitivity

In this section and the following two, we will look at special properties that a

relation may have (or fail to have). Some of these properties are useful when we

ask questions about how similar two items are. Some are needed when we look for

some kind of order among items. Two properties, reflexivity and transitivity, are

essential to both tasks, and so we begin with them.

2.4.1 Reflexivity

Let R be a relation over a set A. We say that R is reflexive (over A) iff (a,a) 2R for

all a 2 A. For example, the relation � is reflexive over the natural numbers, since

always n� n, but< is not. Indeed,< has the opposite property of being irreflexive

over the natural numbers: never n < n.

Clearly, reflexivity and irreflexivity are not the only possibilities. A relation R

over a set may be neither one nor the other { for example n is a prime divisor of n

for some natural numbers (e.g. 2 is a prime divisor of itself) but fails for some

others (e.g. 4 is not a prime divisor of 4).

If we draw a digraph for a reflexive relation, every point will have an

arrow going from it to itself; an irreflexive relation will have no such arrows; a

relation that is neither reflexive nor irreflexive will have such arrows for some but

not all of its points. However, when a relation is reflexive we sometimes reduce

clutter by omitting these arrows and treating them as understood.

EXERCISE 2.4.1 (WITH PARTIAL SOLUTION)

(a) Give another example of a relation over the natural numbers for each of

the three properties reflexive/irreflexive/neither.

(b) Can a relation R ever be both reflexive and irreflexive over a set A? If

so, when?

(c) Identify the status of the following relations as reflexive/irreflexive/

neither over the set of all people living in the UK: sibling of, shares at

least one parent with, ancestor of, lives in the same city as, has listened

to music played by.

(d) What does reflexivity mean in terms of a tabular representation of

relations?
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Solution to (c): The relation ‘sibling of’ as ordinarily understood is not

reflexive, since we do not regard a person as a sibling of himself or herself. In

fact, it is irreflexive. By contrast, ‘shares at least one parent with’ is

reflexive. Its follows that these two relations are not quite the same.

‘Ancestor of’ is irreflexive’. ‘Lives in the same city as’, under it most natural

meaning, is neither reflexive nor irreflexive { not everybody lives in a city.

‘Has listened to music played by’ is also neither reflexive nor irreflexive.

A subtle point needs attention. Let R be a relation over a set A, i.e. R�A2. Then

as we observed earlier, R is also a relation over any superset B of A, since then R�A2

� B2. It can happen that R is reflexive over A, but not over its superset B. This is

because we may have (a,a) 2 R for all a 2 A but (b,b) =2R for some b 2 B{A.

For this reason, whenever we say that a relation is reflexive or irreflexive, we

should in principle specify what set A we have in mind. Doing this explicitly can be

rather laborious, and so in practice the identification of A is often left as

understood.

EXERCISE 2.4.2

(a) Give a small finite example of this dependence phenomenon.

(b) Show that if R is reflexive over A, and B � A, then the restriction of R

to B is reflexive over B.

(c) Show that the intersection and union of any two reflexive relations are

both reflexive, as is also the converse of any reflexive relation.

2.4.2 Transitivity

Another important property for relations is transitivity. We say that R is tran-

sitive iff whenever (a,b) 2 R and (b,c) 2 R then (a,c) 2 R. For example, the

relation � over the natural numbers is transitive: whenever a � b and b � c then

a � c. Likewise for the relation <.

But the relation of having some common prime factor is not transitive: 4 and 6

have a common prime factor (namely 2), and 6 and 9 have a common prime factor

(namely 3), but 4 and 9 do not have any common prime factor. By the same token,

the relation between people of being first cousins (i.e. sharing some grandparent,

but not sharing any parent) is not transitive.

Another relation over the natural numbers failing transitivity is that of being

an immediate predecessor: 1 is an immediate predecessor of 2, which is an
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immediate predecessor of 3, but 1 does not stand in that relation to 3. In this

example, the relation is indeed intransitive, in the sense that whenever (a,b) 2 R

and (b,c) 2 R then (a,c) =2R. In contrast, the relation of sharing a common prime

factor, and that of being a first cousin, are clearly neither transitive nor

intransitive.

In an unabbreviated digraph for a transitive relation, whenever there is an

arrow from one point to a second, and another arrow from the second point to a

third, there should also be an arrow from the first to the third. Evidently, this

tends to clutter the picture. So often, when a relation is transitive we adopt the

convention of omitting the ‘third arrows’, treating them as understood. In any

particular case, one must be clear about the convention one is following.

EXERCISE 2.4.3

(a) Give another example of a relation over the natural numbers for each of

the three properties transitive/intransitive/neither.

(b) Can a relation R ever be both transitive and intransitive? If so, when?

(c) Draw a table indicating the status of each of the following relations on

the transitive/intransitive/neither dimension: sister of, sibling of, par-

ent of, ancestor of.

(d) Show that the intersection of any two transitive relation is transitive.

(e) Give an example to show that the union of two transitive relations need

not be transitive.

2.5 Equivalence Relations and Partitions

We now focus on properties that are of particular interest when we want to

express a notion of similarity or equivalence.

2.5.1 Symmetry

We say that R is symmetric iff whenever (a,b) 2 R then (b,a) 2 R. For example,

the relation of identity (alias equality) over the natural numbers is symmetric:

whenever a¼ b then b¼ a. So is the relation of sharing a common prime factor: if a

has some prime factor in common with b, then b has a prime factor (indeed, the

same one) in common with a. On the other hand, neither� nor< over the natural

numbers is symmetric.
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The way in which< fails symmetry is not the same as the way in which� fails

it. When n<m then we never have m< n, and the relation is said to asymmetric.

In contrast, when n � m we sometimes have m � n (when m ¼ n) but sometimes

m 6� n (when m 6¼ n), and so this relation is neither symmetric nor asymmetric.

In an unabbreviated digraph for a symmetric relation, whenever there is an

arrow from one point to a second, then there is an arrow going back again. Here

too, a special convention can be introduced to reduce clutter: put a head at each

end of the arrow or, better, replace the arrows by links without heads.

EXERCISE 2.5.1

(a) What does symmetry mean in terms of the tabular representation of a

relation?

(b) Give another example of a relation over the natural numbers for each of

the three properties symmetric/asymmetric/neither.

(c) Can a relation R ever be both symmetric and asymmetric? If so, when?

(d) Determine the status of each of the following relations on the transitive/

intransitive/neither dimension: brother of, sibling of, parent of, ancestor of.

(e) Show that the converse of any symmetric relation is symmetric, as are

also the intersection and union of any symmetric relations.

2.5.2 Equivalence Relations

When a relation is both reflexive and symmetric, it is sometimes called a similarity

relation. When it has all three properties { transitivity, symmetry, and reflexivity {

it is called an equivalence relation.

Equivalence relations are often written as using a symbol such as � to bring

out the idea that they behave rather like identity. And like identity they are

usually written by infixing, that is as a� b, rather than in basic set notation as in

(a,b) 2 R or by prefixing as in Rab.

EXERCISE 2.5.2 (WITH PARTIAL SOLUTION)

(a) Give another example of an equivalence relation over the natural

numbers, and one over the set of all polygons in geometry.

(b) (i) Check that the identity relation over a set is an equivalence relation

over that set. (ii) Show also that it is the least equivalence over that set,
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in the sense that it is included in every equivalence relation over the set.

(iii) What is the largest equivalence relation over a set?

(c) Over a set of people, is the relation of having the same nationality an

equivalence relation?

(d) What does the digraph of an equivalence relation look like?

Solutions to (a{c):

(a) For example, the relation of having the same parity (i.e. both even, or

else both odd) is an equivalence relation. For polygons, the relation of

having the same number of sides is an equivalence relation. Of course,

there are many others in both domains.

(b) (i) Identity is reflexive over any set because always a ¼ a. It is

symmetric because whenever a ¼ b then b ¼ a. It is transitive because

whenever a ¼ b and b ¼ c then a ¼ c. (ii) It is included in every other

equivalence relation � over the same set, because we have a � a for

every a 2 A, so a � b whenever a ¼ b. (iii) The largest equivalence

relation over A is A2. Indeed it is the largest relation over A2, and it is

easily checked to be an equivalence relation.

(c) In the case that everyone in A has exactly one nationality, then this is

an equivalence relation. But if someone in A has no nationality, then

reflexivity fails, and if someone has more than one nationality, transi-

tivity may fail. In contrast, the relation of ‘having the same set of

nationalities’ is always an equivalence relation.

Alice Box: Identity, equality, replacement

Alice: You speak of people being identical to each other, but for numbers and

other mathematical objects I more often hear of equality. Are these the same?

Hatter: Logicians tend to speak of identity while number theorists talk of

equality, but they are the same. Identity is equal to equality, equality is

identical with identity. However, both terms are also sometimes used, rather

loosely, to indicate any reasonably ‘tight’ equivalence relation.

Alice: Is there any obvious difference between identity and other equivalence

relations, apart from being the smallest?

Hatter: Yes, there is a very important difference, which is a consequence of

being the smallest. When a¼ b, they are elements of exactly the same sets and

(Continued)
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Alice Box: (Continued)

have exactly the same properties. Any mathematical statement that is true of

one is true of the other, so we may replace one by the other in any statement

without loss of truth. This is, along with reflexivity, is one of the fundamental

properties of identity in first-order logic.

Alice: Can you give me an example?

Hatter: We did just that in one of the parts of the last exercise, when we said that

whenever a� a then if a¼ b we have a� b. Here we were replacing the second a

in a � a by b. In school you learned this as ‘substitution of equals gives equals’.

2.5.3 Partitions

Your hardcopy correspondence is in a mess { one big heap. You need to classify it,

putting items into mutually exclusive but together exhaustive categories, but

without going into subcategories. Mathematically speaking, this means that you

want to create a partition of the set of all the items in the heap.

We now define this concept. Let A be any non-empty set, and let fBigi2I be a

collection of subsets of A.

l We say that the collection exhausts A iff [fBigi2I ¼ A, i.e. iff every element of

A is in at least one of the Bi. Using the notation that we introduced earlier for

the universal and existential quantifiers, iff 8a2A 9i2I (a2Bi).

l We say that the collection is pairwise disjoint iff every two distinct sets Bi in the

collection are disjoint. That is, for all i,j 2 I, if Bi 6¼ Bj then Bi\Bj ¼ ˘. Using

logical notation, iff 8i,j2 I (Bi 6¼ Bj! Bi\Bj = ˘).

A partition of A is defined to be any collection fBigi2I of non-empty subsets of A

that are pairwise disjoint and together exhaust A. The sets Bi are called the cells (or

sometimes, blocks) of the partition. We can diagram a partition in the following

manner.

{   }i i IA ∪ B ∈= {1,...,9}I = 

1 B 2 B 
3 B 

4 B 5 B 

7 B 8 B 

6 B 

9 B 

Figure 2.2 Diagram for a partition.
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EXERCISE 2.5.3 (WITH SOLUTION)

(a) Which of the following are partitions of A¼ f1,2,3,4g? (i) ff1,2g, f3gg,
(ii) ff1,2g, f2,3g, f4gg, (iii) ff1,2g, f3,4g, ˘g, (iv) ff1,4g, f3,2gg.

(b) We say that one partition of a set is at least as fine as another, iff every

cell of the former is a subset of a cell of the latter. What is the finest

partition of A ¼ f1,2,3,4g? What is the least fine partition? In general,

if A has n � 1 elements, how many cells in its finest and least fine

partitions?

Solution:

(a) Only (iv) is a partition of A. In (i) the cells do not exhaust A, in (ii) they

are not pairwise disjoint, and in (iii) one cell is the empty set, which is

not allowed.

(b) The finest partition of A ¼ f1,2,3,4g is ff1g, f2g, f3g, f4gg, and the

least fine is ff1, 2, 3, 4gg. In general, if A has n � 1 elements, then its

finest partition has n cells, while its least fine partition has only 1 cell.

2.5.4 The Correspondence Between Partitions
and Equivalence Relations

It turns out that partitions and equivalence relations are two sides of the same

coin. On the one hand, every partition of a set A determines an equivalence

relation over A in a natural manner; on the other hand, every equivalence relation

over a non-empty set A determines, in an equally natural way, a partition over A.

The verification of this is rather abstract, and hence challenging, but you

should be able to follow it. We begin with the left-to-right direction. Let A be any

set, and let fBigi2I be a partition of A. We define the relation R associated with

this partition by putting (a,b) 2R iff a and b are in the same cell, i.e. iff 9i 2 I with

a,b 2 Bi. We need to show that it is an equivalence relation.

l R is clearly reflexive over A: since the partition exhausts A, 8a 2 A, 9i 2 I with

a 2 Bi and so immediately 9i 2 I with both of a,a 2 Bi.

l Equally clearly, R is symmetric: when (a,b) 2 R then 9i 2 I with a,b 2 Bi so

immediately b,a 2 Bi and thus (b,a) 2 R.

l Finally, R is transitive. Suppose (a,b) 2 R and (b,c) 2 R; we want to show

(a,c) 2 R. Since (a,b) 2 R, 9i 2 I with both a,b 2 Bi, and since (b,c) 2 R, 9j 2 I

with b,c 2 Bj. But since the cells of the partition are pairwise disjoint, either
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Bi ¼ Bj or Bi\Bj ¼ ˘. Since b 2 Bi\Bj the latter is not an option, so Bi ¼
Bj. Hence both a,c 2 Bi, which gives us (a,c) 2 R as desired.

For the right-to-left direction, Let � be an equivalence relation over a non-

empty set A. For each a2A we consider its image�(a)¼fx2A : a� xg under the

relation�. This set is usually written as jaj� or simply as jajwhen the equivalence

relation � is understood, and that is the notation we will use here.

l Non-emptiness. Since � is a relation over A, each set jaj is a subset of A, and it

is non-empty because � is reflexive over A.

l Exhaustion. The sets jaj together exhaust A, i.e.[fjajga2A¼A, again because�
is reflexive over A.

l Pairwise disjointedness. Let a,a0 2 A and suppose jaj \ ja0j 6¼˘. We show that

jaj ¼ ja0j (contrapositive argument again). For that, it suffices to show that jaj
� ja0j and conversely ja0j � jaj. We do the former; the latter is similar. Let x2 jaj
i.e. a � x; we need to show that x 2 ja0j, i.e. that a0 � x. By the initial

supposition, there is a y with y 2 jaj \ ja0j, so y 2 jaj and y 2 ja0j, so a � y and

a0 � y. Since a � y symmetry gives us y � a, and so we may apply transitivity

twice: first to a0 � y and y � a to get a0 � a, and then to that and a � x to get

a0 � x as desired.

Note that in the proof of the right-to-left part, we appealed to all three of the

conditions reflexivity, symmetry and transitivity. You can’t get away with less.

When� is an equivalence relation over A, the sets jaj for a 2A (i.e. the cells of

the corresponding partition) are called equivalence classes of �, and are thus the

same as the cells of the corresponding partition.

EXERCISE 2.5.4

(a) Let A be the set of all positive integers from 1 to 10. Consider the

partition into evens and odds. Write this partition by enumeration as a

collection of sets, then describe the corresponding equivalence relation

in words, and write it by enumeration as a set of ordered pairs.

(b) Let A be the set of all positive integers from 2 to 16. Consider the

relation of having exactly the same prime factors (so e.g. 6 � 12 since

they have the same prime factors 2 and 3). Identify the associated

partition by enumerating it as a collection of subsets of A.

(c) How would you describe the equivalence relation associated with the

finest (respectively: least fine) partition of A?
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2.6 Relations for Ordering

Suppose that we want to use a relation to order things. It is natural to require it to be

transitive. We can choose it to be reflexive, in which case we get an reflexive order

(like � over the natural numbers or � between sets); or to be irreflexive, in which

case we get what is usually known as a strict order (such as< or �). In this section

we examine some special kinds of inclusive order, and then look at strict orders.

2.6.1 Partial Order

Consider a relation that is both reflexive and transitive. What other properties do

we want it to have if it is to serve as an ordering?

Not symmetry, for that would make it an equivalence relation. Asymmetry?

Not quite, for a reflexive relation over a non-empty set can never be asymmetric.

Recall the reason: if A is non-empty, then there is some a 2A, so reflexivity gives

(a,a) 2 R, so to repeat ourselves both (a,a) 2 R and (a,a) 2 R, contrary to

asymmetry.

What we need is the closest possible thing to asymmetry: whenever (a,b) 2 R,

then (b,a) =2R provided that a 6¼ b. This property is known as antisymmetry, and it

is usually formulated in a contraposed (and thus equivalent) manner: whenever

(a,b) 2 R and (b,a) 2 R then a ¼ b.

A relation R over a set A that is reflexive (over A), transitive, and also

antisymmetric is called a partial order (or partial ordering) of A, and the pair

(A,R) is called for short a poset. It is customary to write a partial ordering as� (or

some square or curly variant of the same sign) even though, as we will soon see, the

familiar relation ‘less than or equal to’ over the natural numbers (or any other

number system) has a further property that not all partial orderings share.

Two examples of partial order:

l For sets, the relation � of inclusion is a partial order. As we already know, it is

reflexive and transitive. We also have antisymmetry, since whenever A � B

and B � A then A ¼ B.

l In arithmetic, an important example is the relation of being a divisor of, over

the positive integers, i.e. the relation R over Nþ defined by (a,b) 2 R iff b = ka

for some k 2Nþ.

EXERCISE 2.6.1

(a) Check that the relation of being divisor of, over the positive integers, is

indeed a partial order.
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(b) What about the corresponding relation over Z, i.e. the relation R over

Z defined by (a,b) 2 R iff b = ka for some k 2 Z?

(c) And the corresponding relation over Qþ, i.e. the relation R over Qþ

defined by (a,b) 2 R iff b = ka for some k 2 Qþ?

(d) Consider the relation R over people defined by (a,b) 2 R iff either b¼ a

or b is descended from a. Is it a poset?

(e) Show that the relation of ‘being at least as fine as’, between partitions

of a given set A, is a partial order.

2.6.2 Linear Orderings

A relation R over a set A is said to be complete over A iff for all a,b2A, either (a,b)

2 R or (b,a) 2 R. A poset that is also complete is often called a linear (or total)

ordering.

Clearly the relation� over N is complete and so a linear ordering, since for all

m,n2N either m� n or n�m. So is the usual lexicographic ordering of words in a

dictionary.

On the other hand, whenever a set A has more than one element, then the

relation� over P(A) is not complete. Reason: take any two distinct a,b 2A, and

consider the singletons fag, fbg; they are both elements of P(A), but neither

fag� fbg nor fbg� fag because a 6¼ b.

EXERCISE 2.6.2 (WITH SOLUTION)

(a) Give two more linear orderings of N.

(b) Which of the following are linear orderings over an arbitrary

set of people? (i) is at least as old as, is (ii) identical to or a descen-

dent of.

Solution:

(a) There are plenty, but here are two: (i) the relation �, i.e. the con-

verse of �, (ii) the relation that puts all odd positive integers first,

and then all the even ones, each of these blocks ordered separately as

usual.

(b) (i) Yes, it meets all the requirements, (ii) no, since it is not complete.
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2.6.3 Strict Orderings

Whenever we have a reflexive transitive relation � we can always look at what

is known as its strict part. It is usually written as < (or a square or curly variant

of this) even though it need not have all the properties of ‘less than’ over the

usual number systems. The definition is as follows: a < b iff a � b but a 6¼ b. In

language that looks like gibberish but makes sense if you read it properly: (<)¼
(� \ 6¼).

EXERCISE 2.6.3 (WITH SOLUTION)

(a) Show that every asymmetric relation over a set A is irreflexive.

(b) Show that when � is a partial ordering over a set A then its strict part

< is asymmetric and transitive.

Solution:

(a) Suppose that< is asymmetric, but not irreflexive. We get a contradiction.

Since the relation is not irreflexive, there is an a 2A with a< a. Hence by

asymmetry, not a < a, giving us a contradiction and we are done.

(b) For asymmetry, suppose a< b and b< a; we get a contradiction. By the

suppositions, a � b, b � a and a 6¼ b, which is impossible by the

antisymmetry of �.

For transitivity, suppose a< b and b< c; we want to show that a< c. By the

suppositions, a� b and b� c but a 6¼ b and b 6¼ c. Transitivity of� thus gives

a � c; it remains to check that a 6¼ c. Suppose a ¼ c; we get a contradiction.

Since b� c and a ¼ c we have b� a, so by the antisymmetry of� using also

a � b we have a ¼ b, giving us the desired contradiction with a 6¼ b.

Alice Box: Proof by contradiction (reductio ad absurdum)

Alice: There is something in the solution to this exercise that worries me. We

supposed the opposite of what we wanted to show. For example, to show that

the relation < there is asymmetric, we supposed that both a < b and b < a,

which is the negation of what we are trying to prove.

Hatter: Indeed we did, and the goal of the argument changed when we made the

supposition: it became one of deriving a contradiction. In the exercise, we got

our contradictions very quickly; sometimes it takes more argument.

(Continued)
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Alice Box: (Continued)

Alice: Will any contradiction do?

Hatter: Any contradiction you like. Any pair of propositions � and :�. Such

pairs are as bad as each other, and thus just as good for the purposes of the proof.

Alice: Is this procedure some new invention of modern logicians?

Hatter: Not at all. It was well known to the ancient Greeks, and can be found

in Euclid. In the Middle Ages it was taught under its Latin name reductio ad

absurdum, sometimes abbreviated to RAA, and this name is still often used.

Alice: Can we always apply it?

Hatter: Any time you like. Some people like to use whenever they can, others

do so only when they get stuck without it. Most are somewhere in the middle {

they use it when they see that it can make the argument visibly shorter or

more transparent.

Alice: Does it do that for the last exercise?

Hatter: That’s for you to judge. Do the same exercise again without using

proof by contradiction, and compare the answers.

In the preceding chapter we observed that the relation of immediate inclusion

between finite sets may be represented by a Hasse diagram. The same is true for

any partial order � over a finite set. The links of the diagram, read from below to

above, represent the relation of being an immediate predecessor of. This is the

relation that holds between a and b iff a< b but there is no x with a< x< b, where

< is the strict part of �.

Once we have a Hasse diagram for the immediate predecessor part of a partial

ordering, we can read off from it the entire relation: a� b iff there is an ascending

path (with at least one element) from a to b. Evidently, this is a much more

economical representation than drawing the digraph for the entire partial order-

ing. For this reason, we loosely call it the Hasse diagram of the partial ordering

itself, and similarly for its strict part.

EXERCISE 2.6.4

Draw a Hasse diagram for (the immediate predecessor part of) the relation

of being an exact divisor of, over the set of positive integers up to 13.

We have seen in an exercise that when � is a partial ordering over a set A

then its strict part < is asymmetric and transitive. We also have a converse:
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whenever a relation < is both asymmetric and transitive, then the relation �
defined by putting a� b iff either a< b or a¼ b is a partial order. Given this two-

way connection, asymmetric transitive relations are often called strict partial

orders.

EXERCISE 2.6.5

Show, as claimed in the text, that when < is a transitive asymmetric

relation, then the relation � defined by putting a � b iff either a < b or

a ¼ b is a partial order.

2.7 Closing with Relations

2.7.1 Transitive Closure of a Relation

Suppose you are given a relation R that is not transitive, but which you want to

‘make’ transitive. Of course, you cannot change the status of R itself, but you can

expand it to a larger relation that satisfies transitivity.

In general, there will be many of these. For example whenever R�A2 then A2

itself is a transitive relation that includes R. But there will be much smaller ones,

and it is not difficult to see that there must always be a unique smallest transitive

relation that includes R; it is called the transitive closure of R and is written as R*.

It may be defined as the intersection of the collection of all transitive relations

that include R. That is: when R is a relation over A then R* = \fS : R � S � A2

and S is transitiveg.

EXERCISE 2.7.1 (WITH PARTIAL SOLUTION)

(a) Identify the transitive closures of the following relations: (i) parent of,

(ii) mother of, (iii) descendant of, (iv) sister of.

(b) Show that R*, as defined, is claimed the least transitive relation that

includes R, i.e. that (i) R� R*, (ii) R* is transitive, and (iii) R*� S for

every transitive relation S with R � S.

(c) Write the following assertions in the notation for converse and transi-

tive closure, and determine whether they are true or false: (i) the

converse of the transitive closure of a relation equals the transitive

closure of the converse of that relation, (ii) the intersection of the
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transitive closures of two relations equals the transitive closure of their

intersection.

Solution to (a): Ancestor of. (ii) Ancestor of in the female line (there is

no single word for this in English). (iii) Descendant of (as this relation is

already transitive, it coincides with its transitive closure). (iv) This one

is tricky. Remember that a female will be a sister of each of her sisters,

so that for her the transitive closure will include selfhood. One way of

expressing this relation is as follows, writing (a,b) 2 S for a is a sister of

b, and F for the set of female persons: S* ¼ S[f(y,y) : y 2 F and 9z
(z,y) 2 Sg.

As well as this ‘top-down’ definition using intersection, one can work with a

‘bottom-up’ one using union. We define the relations R0, R1,. . . as follows:

R0 ¼ R

Rnþ1 ¼ Rn [ fða; cÞ : 9x with ða; xÞ 2 Rn and ðx; cÞ 2 Rg

R	 ¼ [fRn : n 2 Ng:

In this way, R* is built up by successively adding pairs (a,c) whenever (a,x) is

in the relation constructed so far and (x,c) 2 R. We keep on doing this until there

are no such pairs (a,c) still needing to be put in, and keep going indefinitely if there

are always such pairs.

2.7.2 Closure of a Set Under a Relation

Transitive closure is in fact a particular instance of a more general construction of

great importance { the closure of an arbitrary set under an arbitrary relation.

To introduce it, we recall the definition of image from earlier in this chapter.

The image R(X) of a set X under a relation R is the set of all b such that (x,b) 2 R

for some x 2 X; briefly R(X) ¼ fb : 9x 2 X, (x,b) 2 Rg.
Now, suppose we are given a relation R (not necessarily transitive) over a set

B, and a subset A � B. We define the closure R[A] of A under R to be the least

subset of B that includes A and also includes R(X) whenever it includes X.

Again, this is a top-down definition, with ‘least’ understood as the result of

intersection. It can also be expressed bottom-up, as follows:

A0 ¼ A

Anþ1 ¼ An [ RðAnÞ for each natural number n

R½A
 ¼ [fAn : n 2 Ng:
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The closure of A under R is thus constructed by beginning with A itself, and at

each stage adding in the elements of the image of the set so far constructed.

EXERCISE 2.7.2 (WITH SOLUTION)

In the set N of natural numbers, what is the closure R[A] of the set A¼ f2,5g
under the following relations: (a) (m,n) 2 R iff m,n 2 N and n ¼ mþ1, (b)

(m,n) 2 R iff m,n 2N and n ¼ m{1, (c) (m,n) 2 R iff m,n 2N and n ¼ 2m,

(d) (m,n) 2 R iff m,n 2N and n ¼ m/2, (e) �, (f) <.

Solution: (a) fn 2 N : n � 2g, (b) fn 2 N : n � 5g = f0,1,2,3,4,5g, (c)

f2,4,8,. . . ; 5,10,20,. . .g, (d) f1,2,5g, (e) fn 2N : n� 2g, (f) fn 2N : n� 2g.

Comment: If you wrote fn 2 N : n > 2g as your answer to (f), you forgot

that A � R[A] for every relation R.

Notation and terminology: When the relation R is understood, we sometimes

write the closure R[A] more briefly as Aþ, and say that R generates the closure

from A.

FURTHER EXERCISES

2.1. Cartesian products

(a) Show that A�(B\C) ¼ (A�B)\ (A�C).

(b) Show that A�(B[C) ¼ (A�B)\ (A�C).

2.2. Domain, range, join, composition, image

(a) Consider the relations R¼ f(1,7), (3,3), (13,11)g and S¼ f(1,1), (1,7),

(3,11), (13,12), (15,1)g over the positive integers. Identify dom(R\ S),

range(R\ S), dom(R[S), range(R[S).

(b) In the same example, identify join(R,S), join(S,R), S �R, R � S,

R �R, S � S.

(c) In the same example, identify R(X) and S(X) for X ¼ f1,3,11g and

X ¼ ˘.

2.3. Reflexivity and transitivity

(a) Show that R is reflexive over A iff IA � R. Here IA is the identity

relation over A, defined in an earlier exercise.
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(b) Show that the converse of a reflexive relation R over a set A is reflexive

over A.

(c) Show that R is transitive iff R8R � R.

(d) In a previous exercise we showed that the intersection of any two

transitive relations is transitive but their union may not be. (i) Show

that the converse and composition of transitive relations are also

transitive. (ii) Give an example to show that the complement of a

transitive relation need not be transitive.

(e) A relation R is said the be acyclic iff there are no a1,. . .,an (n� 2) such that

each (ai,aiþ1) 2 R and also an = a1. (i) Show that a transitive irreflexive

relation is always acyclic. (ii) Show that every acyclic relation is irreflexive.

(iii) Give an example of an acyclic relation that is not transitive.

2.4. Symmetry, equivalence relations and partitions

(a) Show that the following three conditions are equivalent: (i) R is sym-

metric, (ii) R � R{1, R ¼ R{1.

(b) Show that a reflexive relation over a non-empty set can never be

asymmetric.

(c) Show that if R is reflexive over A and also transitive, then the relation S

defined by (a,b) 2 S iff both (a,b) 2 R and (b,a) 2 R is an equivalence

relation.

(d) Show that the intersection of two equivalence relations is an equivalence

relation, but that this is not the case for unions. Hint: make use of the results

of exercises on reflexivity, transitivity, and symmetry in this chapter.

(e) Enumerate all the partitions of A ¼ f1,2,3g and draw a Hasse diagram

for them under fineness.

(f) Show that one partition of a set is at least as fine as another iff the

equivalence relation associated with the former is a subrelation of the

equivalence relation associated with the latter.

2.5. Antisymmetry, partial order, linear order

(a) Let R be any reflexive, transitive relation over a set A. Define S over A

by putting (a,b) 2 S iff either a ¼ b or both (a,b) 2 R and (b,a) =2R.

Show that S partially orders A.

(b) Show that the converse of a linear order is linear, but that the intersec-

tion and composition of two linear orders need not be linear.
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(c) Show that the identity relation over a set A is the unique partial order

of A that is also an equivalence relation.

2.6. Strict orderings

(a) Give examples of relations that are (i) transitive but not asymmetric,

and (ii) asymmetric but not transitive.

(b) Show that a relation is antisymmetric iff its strict part is asymmetric.

(c) Let A be a set and� a partial ordering of A. An element a2A is said to be

a minimal element of A (under�) iff there is no b 2A with b< a. On the

other hand, an element a 2A is said to be a least element of A (under�)

iff a � b for every b 2 A. Show the following for sets A and partial

orderings �: (i) whenever a is a least element of A then it is a minimal

element of A, (ii) The converse can fail (give a simple example); (iii) A can

have zero, one, or more than one minimal elements (give an example of

each); (iv) A can have at most one least element under a partial ordering,

i.e. if a least element exists then it is unique.

2.7. Closure

(a) Show that always X[R(X) � R[X].

(b) Show that R[A] ¼ R(A) if R is both reflexive over A and transitive.

Selected Reading

As for the preceding chapter, a classic of beautiful exposition, but short on

exercises:

Paul R. Halmos Naive Set Theory. Springer, 2001 (new edition), Chapters 6{7.

The material is covered with lots of exercises in:

Seymour Lipschutz Set Theory and Related Topics. McGraw Hill Schaum’s

Outline Series, 1998, Chapter 3.

All textbooks on discrete mathematics have something on relations, although it is

sometimes spread out in different chapters. One popular text is:

Richard Johnsonbaugh Discrete Mathematics. Pearson, 2005 (sixth edition)

Chapter 3.
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3
Associating One Item with Another:

Functions

Chapter Outline

Functions occur everywhere in mathematics and computer science. In this chap-

ter we introduce the basic concepts needed in order to work with them.

We begin by explaining the intuitive idea of a function and its mathematical

definition as a special kind of relation. We then we see how the concepts for

relations that were studied in the previous chapter unfold in this case (domain,

range, image, restriction, closure, composition, inverse), and distinguish some

important kinds of function (injective, surjective, bijective) with special beha-

viour. These concepts permit us to link functions with counting, with the equi-

numerosity, comparison and surprisingly versatile pigeonhole principles. Finally

we identify some very simple functions that appear over and again (identity,

constant, projection and characteristic functions), as well as the deployment of

functions to represent sequences and families.

3.1 What is a Function?

Traditionally, a function was seen as a rule, often written as an equation, which

associates any number (called the argument of the function) with another

number, called the value of the function. The concept has for long been used in

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 3, � Springer-Verlag London Limited 2008
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physics and other sciences to describe processes whereby one quantity (such as

the temperature of a gas, the speed of a car) affects another (its volume, its

braking distance). In accord with such applications, the argument of the func-

tion was sometimes called the ‘independent variable’, and the value of the

function termed the ‘dependent variable’. The idea is that each choice for the

argument or independent variable causally determines a value for the dependent

variable.

Over the last two hundred years, the concept of a function evolved in the

direction of greater abstraction and generality. The argument and value of the

function need not be numbers { they can be items of any kind whatsoever. The

function need not reflect a causal relationship, nor indeed any physical process,

although these remain important applications. The function may not even be

expressible by any linguistic rule, although all of the functions that we will

encounter in this book are. Taken to the limit of abstraction, a function is no

more than a set of ordered pairs, i.e. a relation in the sense of the preceding

chapter, which satisfies a certain additional condition.

The formal definition is as follows. A function from a set A to a set B is

any binary relation R from A to B such that for all a 2 A there is exactly one

b 2 B with (a,b) 2 R. The italicised parts of the definition deserve special

attention.

l ‘Exactly one. . .’: This implies that there is always at least one b2B with (a,b)2
R, and never more than one.

l ‘For all a 2 A. . .’: This implies that the specified source A of the relation is in

fact its domain: there is no element a of A that fails to be the first term in some

pair (a,b) 2 R.

Strictly speaking, this is the definition of a one-place function, from a single set

A to a set B. However, a function can have more than one argument, and we can

generalize the definition accordingly. If A1,. . .,An are sets, then an n-place func-

tion from A1,. . .,An is an (nþ1)-place relation R such that for all a1,. . .,an with

each ai 2 Ai there is exactly one b 2 B with (a1,. . .,an,b) 2 R.

In appearance, this is more general than the definition of one-place functions,

which comes down to the case where n ¼ 1. But in fact, it is already covered by

that case: we may treat an n-place function from A1,. . .,An as a one-place function

from the Cartesian product A1� . . . �An to B. For example, addition and

multiplication on the natural numbers are usually thought of a two-place func-

tions f and g with f(x,y) = xþy and g(x,y) = x �y, but they may also be thought of as

one-place functions on N�N into N with f((x,y)) = xþy and g((x,y)) = x �y. So

there will be no real loss in generality when, to keep notation simple, we formulate

principles in terms of one-place functions.
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From time to time we will make use of a generalization of the notion of a

function that relaxes the definition: A partial function from a set A to a set B is a

binary relation R from A to B such that for all a2A there is at most one b2B with

(a,b) 2 R. The difference is that there may be elements of A that do not have the

relation R to any element of B. Partial functions are also important for computer

science, but for the present we will focus on functions in the full sense of the term.

In terms of tables: a function from A to B is a relation whose table has exactly

one 1 in each row. In terms of digraphs: every point in the A circle has exactly one

arrow going out from it to the B circle.

EXERCISE 3.1.1 (WITH PARTIAL SOLUTION)

For each of the following relations from A = fa,b,c,dg to B = f1,2,3,4,5g,
determine whether or not it is a function from A to B in all three ways { via

the definition, the table and the digraph. Whenever your answer is nega-

tive, give your reason. Are any of the relations that are not functions from A

to B nevertheless partial functions from A to B?

(a) f(a,1), (b,2), (c,3)g

(b) f(a,1), (b,2), (c,3), (d,4), (d,5)g

(c) f(a,1), (b,2), (c,3), (d,5)g

(d) f(a,1), (b,2), (c,2), (d,1)g

(e) f(a,5), (b,5), (c,5), (d,5)g

Partial solution: We solve in terms of the definition. (a) No, since d2A but

there is no pair of the form (d,x) in the relation, so that the ‘at least one’

condition fails. It is nevertheless a partial function from A to B. (b) No,

since both (d,4) and (d,5) are in the relation and evidently 4 6¼ 5 (the ‘at

most one’ condition fails). For this reason, it is not even a partial function

from A to B. (c) Yes: each element of the source is related to exactly one

element of the target is; it does not matter that the element 4 of the target

‘left out’. (d) Yes; it does not matter that the element 2 of the target is ‘hit

twice’. (e) Yes; it does not matter that the only element of the target that is

hit is 5. This is called the constant function with value 5 from A to B.

Functions are usually referred to with lower case letters f,g,h,. . . Since for all

a 2A there is a unique b2B with (a,b)2 f, we may use a very convenient notation

for them. We call that unique b the value of a under the function f, and write it as

f(a). In computer science we also say that f(a) is the output of the function f for

input a.

3.1 What is a Function? 65



For brevity, we also write f: A! B to mean that f is a function from A to B.

In the case that B ¼ A, so that we have a function f: A ! A from A to A, we

usually say briefly that f is a function on A.

3.2 Operations on Functions

As functions are relations, all the operations that we introduced in the theory of

relations apply to them. However, some are more useful than others in this

context, or may be expressed in a novel way, and we begin by reviewing them.

At times, terminology is used a little differently from the way it is employed in the

theory of relations; we will note these occasions as they arise.

3.2.1 Domain and Range

These two concepts carry over without change. Recall that when R is a relation

from A to B, then dom(R) ¼ fa 2 A : 9b 2 B ((a,b) 2 R)g. When R is in fact

a function f, this reduces to dom(f ) = fa 2 A : 9b 2 B (f (a) ¼ b)g. Thus when f:

A! B, then dom(f ) = A.

Likewise, range(R)¼ fb 2B : 9a 2A ((a,b) 2R)g, which for functions reduces

to range(f ) = fb 2B : 9a 2A (f (a)¼ b)g. When f: A! B then range(f ) may be B

itself or any of its proper subsets.

EXERCISE 3.2.1 (WITH SOLUTION)

(a) In Exercise 3.1.1(c{e), calling the functions f, g and h respectively,

identify their domain and range.

(b) Can the domain of a function ever be empty? And the range?

(c) Which of the following relations from Z into Z (see Section 1.7 to recall

its definition) is a function from Z to Z? Which of those that fail to be a

function from Z to Z is nevertheless a partial function from Z to Z?

(i) f(a, Åa Å) : a 2 Zg

(ii) f(Åa Å, a) : a 2 Zg

(iii) f(a, a2) : a 2 Zg

(iv) f(a2, a) : a 2 Zg

(v) f(a, aþ1) : a 2 Zg
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(vi) f(aþ1, a) : a 2 Zg

(vii) f(2a, a) : a 2 Zg

Solutions:

(a) dom(f ) ¼ dom(g) ¼ dom(h) ¼ A; range(f ) ¼ f1,2,3,5g, range(g) ¼
f1,2g, range(h) ¼f5g.

(b) There is just one function with empty domain, and that is the empty

function (i.e. empty relation). The empty function is also the unique

function with empty range.

(c)

(i) Yes: for every a 2 Z there is a unique b 2 Z with b ¼ jaj.

(ii) No: for two reasons. First, dom(R) ¼ N�Z. Second, even within

this domain, the ‘at most one’ condition is not satisfied, since a

can be positive or negative.

(iii) Yes: for every a 2 Z there is a unique b 2 Z with b ¼ a2.

(iv) No: same reasons as for (ii).

(v) Yes: for every a 2 Z there is a unique b 2 Z with b ¼ aþ1.

(vi) Yes: every x 2 Z is of the form aþ1 for a unique a 2 Z, namely for

a ¼ x{1.

(vii) No: dom(R) is the set of all even (positive or negative) integers only.

Among those failing to be a function from Z to Z, (vii) is the only one that is

nevertheless a partial function from Z to Z. The relations in (ii) and (iv) are

not partial functions, since even within their domains the ‘at most one’

condition is not satisfied.

3.2.2 Image, Restriction, Closure

Let f: A! B, i.e. let f be a function from A to B, and let X�A. The image under f

of X�A is the set fb2B : 9a2X, b¼ f(a)g, which can also be written more briefly

as ff(a) : a 2 Ag. Thus, to take limiting cases as examples, the image f(A) of A

itself is range(f ), and the image f(˘) of ˘ is ˘, while the image of a singleton

subset fag � A is the singleton ff(a)g. Thus image is not quite the same thing as

value: the value of a 2 A under f is f(a), while the image of fag � A under f is

ff(a)g. However, many texts also use the term ‘image’ rather loosely as a synonym

of ‘value’. Always check what your author means.
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When f: A! B and X � A, the image of X under f is usually written as f(X),

and we will follow this standard notation. However, there are contexts in which it

can be ambiguous. Suppose that A is of mixed type, in the sense that some element

X of A is also a subset of A, i.e. both X 2 A and X � A. Then the expression f(X)

becomes ambiguous: in a basic sense it denotes the value of X under f, while in a

derivative sense it stands for the image ff(x) : x 2Xg of X under f. In this book we

will rarely be discussing sets of mixed type, and so do not have to worry about the

problem, but in contexts where mathematicians deal with them they sometimes

avoid ambiguity by using the alternative notation f 00(X) for the image.

The concept of restriction is quite straightforward. Using the general definition

from the theory of relations, the restriction of f: A ! B to X � A is the unique

function on X to B that agrees with f over X. Notations vary, but one is f ÅX. Thus

f ÅX: X! B with f ÅX(a) ¼ f(a) for all a 2 X. Because this is such a trivial operation

and is rarely at the centre of attention, it is very common to cut down on distracting

subscripts and use the same letter f for the function and its restriction, leaving it to

context to make it clear that the domain has been reduced from A to its subset X.

Warning: When f: A! A and X� A, then the restriction of f to X will always

be a function from X to A, but it will not always be a function from X to X, because

there may be an a 2X�A with f(a) 2A\X. We will see a simple example of this in

the next exercise.

Image should not be confused with closure. Let f be a function from A to A and

let X � A. Then, in a ‘top down’ version, the closure f [X] of X under f is the least

subset of A that includes X and also includes f(Y) whenever it includes Y.

Equivalently, in a ‘bottom up’ or recursive form, we define A0 ¼ X and Anþ1 ¼
An[f(An) for each natural number n, and put f [X]¼[fAn : n 2Ng. We will make

use of this notion in the chapter on recursion and induction.

EXERCISE 3.2.2 (WITH SOLUTION)

In Exercise 3.2.1(c), we saw that the relations (i) f(a, Åa Å) : a 2 Zg, (iii)

f(a, a2) : a 2Zg, (v) f(a, aþ1) : a 2Zg, (vi) f(aþ1, a) : a 2Zg are functions

from Z to Z. Call them mod, square, successor, predecessor respectively.

Now recall the set N ¼ f0,1,2,3,. . .g from Section 1.7.

(a) Determine the image of N under each of these four functions.

(b) Restrict the four functions to N. Which of them are functions into N?

(c) Determine the images and closures of the set A¼ f{1,0,1,2g under each

of the four functions.
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Solution:

(a) mod(N)¼ fÅn Å : n 2Ng ¼ fn : n 2Ng ¼N; square(N)¼ fn2 : n 2Ng
¼ f0,1,4,9,. . .g; successor(N) = fnþ1 : n 2Ng ¼Nþ; predecessor(N)

= fn{1 : n 2Ng ¼ f{1g[N.

(b) The only one that is not into N is the predecessor function, since 0{1¼
{1 =2N. It is thus a function on N into f{1g[N.

(c) Mod(A)¼ f0,1,2g but mod[A]¼ A; square(A)¼ f0,1,4g but square[A]

¼ f0,1,2,4,16,32,...g; successor(A) = f0,1,2,3g but successor[A] ¼
f{1,0,1,2,...g ¼ f{1g[N; predecessor(A) = f{2,{1,0,1g but predeces-

sor[A] = f. . .,{2,{1,0,1,2g = Z{[f0,1,2g.

Comments: (1) The restriction of mod: Z! Z to N is clearly the set of all

pairs (n,n) 2N, i.e. the function f: N!N that puts f(n) ¼ n for all n 2N.

This is known as the identity function over N. For any set A, the identity

function over A is the function f: A ! A that puts f(a) ¼ a for all a 2 A.

(2) In part (c), remember that although A is not always included in its

image f(A), A is always included in its closure f[A].

3.2.3 Composition

Perhaps the most important operation to apply to functions is that of composi-

tion. Suppose we are given two relations R � A�B and S � B�C, so that the

target of R is the source of S. Recall that their composition S8R is the set of all

ordered pairs (a,c) such that there is some x with both (a,x) 2 R and (x,c) 2 S.

Now consider the case that f is in fact a function from A to B and g is a function

from B to C, briefly f: A! B and g: B! C. Then g8f is the set of all ordered pairs

(a,c) such that there is some x with both x ¼ f(a) and c ¼ g(x); in other words,

such that c ¼ g(f(a)). It follows immediately that g8f is a function from A to C,

since for every a 2 A there is a unique c 2 C with c ¼ g(f(a)).

To sum up, composition is an operation on relations which, when applied to

functions with suitable domains and targets, can be defined without using the existen-

tial quantifier, and which always gives us a function. In brief notation: given functions f:

A!B and g: B!C the composition g8f: A!C is a function defined by putting g8f(a)

¼ g(f(a)). Now you can see why composition of functions and relations is written in the

order we have been using: it harmonizes with standard notation for functions.

Composition is associative. Let f: A! B, g: B! C, h: C! D. Then (h8(g8f))¼
((h8g)8f) since for all a 2A, (h8(g8f))(a)¼ h(g(f(a)))¼ ((h8g)8f)(a). In rather tedious

detail: on the one hand, (g8f): A! C with g8f(a) ¼ g(f(a)), so h8(g8f): A! D with
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(h8(g8f))(a) ¼ h(g(f(a))). On the other hand, (h8g): B! C with (h8g)(b) ¼ h(g(b)),

so (h8g)8f: A! D with also ((h8g)8f)(a) ¼ h(g(f(a))).

However, composition of functions is not in general commutative. Let f: A! B,

g: B!C. Then the composition g8f is a function, but f8g is not a function unless also

C¼A. Even in the case that A¼ B¼ C, so that g8f and f8g are both functions, they

may not be the same function. For example, suppose that A¼ B¼ C¼ f1,2g, with

f(1)¼ f(2)¼ 1 while g(1)¼ 2 and g(2)¼ 1. Then g8f(1)¼ g(f(1))¼ g(1)¼ 2, while

f8g(1) ¼ f(g(1)) ¼ f(2) ¼ 1.

EXERCISE 3.2.3

(a) Draw a diagram to illustrate the above example of non-commutativity

of composition.

(b) Give an example of functions f,g: N!N such that f8g 6¼ g8f.

(c) Show that we can generalize the definition of composition a little, in the

sense that the composition g8f: A! C is a function whenever f: A! B

and g: B 0 !C and B�B 0. Give an example to show that g8f may not be

a function when, conversely, B 0 � B.

3.2.4 Inverse

We recall the notion of the converse (alias inverse) R{1 of a relation: it is the set of

all ordered pairs (b,a) such that (a,b) 2 R. The converse of a relation R is thus

always a relation. But when R is a function, the converse is sometimes a function,

sometimes not.

EXERCISE 3.2.4 (WITH PARTIAL SOLUTION)

(a) Let A¼ f1,2,3g and B¼ fa,b,c,dg. Let f¼ f(1,a), (2,a), (3,b)g and g¼
f(1,a), (2,b), (3,c)g. (i) Explain why neither f{1 ¼ f(a,1), (a,2), (b,3)g
nor g{1 ¼ f(a,1), (b,2), (c,3)g is a function from B to A. (ii) Draw a

diagram of the example.

(b) Give examples of (i) a function f: Z!Z whose inverse is not a function,

(ii) a function g: N!N whose inverse is not a function.

Partial solution to (a): f {1 is not a function at all, because we have both

(a,1), (a,2) in it. On the other hand, g{1 is a function, but not from B to A,
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but rather from the proper subset B 0 ¼ fa,b,cg � B to A. It is thus a partial

function from B to A.

The existence of an inverse function is closely linked with two further con-

cepts, injectivity and surjectivity, which we now examine.

3.3 Injections, Surjections, Bijections

3.3.1 Injectivity

Let f: A! B. We say that f is injective (alias one-one) iff whenever a 6¼ a0 then

f(a) 6¼ f(a0). In words, iff it takes distinct arguments to distinct values (distinct

inputs to distinct outputs). Contrapositively: iff whenever f(a)¼ f(a0) then a¼ a0.

In other words, iff for each b 2 B there is at most one a 2 A with f(a) ¼ b.

Of the two functions f,g described in Exercise 3.2.4, f is not injective, since

f(1) = f(2) although 1 6¼ 2. However, g is injective since it takes distinct arguments

to distinct values.

EXERCISE 3.3.1 (WITH PARTIAL SOLUTION)

(a) In an earlier exercise, we saw that the relations (i) f(a, Åa Å) : a 2 Zg,
(iii) f(a, a2) : a 2 Zg, (v) f(a, aþ1) : a 2 Zg, (vi) f(aþ1, a) : a 2 Zg are

functions over Z, i.e. from Z to Z, called mod, square, successor,

predecessor respectively. Which of them are injective?

(b) What does injectivity mean in terms a digraph for the function?

(c) What does injectivity mean in terms a table for the function?

(d) Show that the composition of two injective functions is injective, and

give examples to show that the failure of injectivity in either of the two

components can lead to failure of injectivity for the composition.

Solution to (a): Over Z, mod is not injective, since e.g. Å1Å¼ Å�1Å, likewise

for square since e.g. 32 ¼ ({3)2. On the other hand, successor is injective,

since aþ1 ¼ a0þ1 implies a ¼ a0 for all a,a0 2 Z. Similarly, predecessor is

injective, since a ¼ a0 implies aþ1 ¼ a0þ1.

Comment: This exercise brings out the importance of always keeping

clearly in mind the intended domain of the function when checking whether

it is injective. Take for example the function of squaring. As we have just
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seen, when understood with domain Z, it is not injective. But when under-

stood with domain N (i.e. as the restriction of the former function to N)

then it is injective, since for all natural numbers a,b,a2 ¼ b2 implies a ¼ b.

Note that the injectivity of a function from A to B is not enough to guarantee

that its inverse is a function from B to A. For example, as noted in the comments

on the last exercise, the function of squaring on N (rather than on Z) is injective.

But its inverse is not a function on N, since there are elements of N, e.g. 5, that are

not in its domain, not being the square of any natural number.

Nevertheless, injectivity gets us part of the way: it suffices to ensure that the

inverse relation f{1 of a function from A to B is a function from range(f)� B to A,

and so is a partial function from B to A. Reason: From our work on relations, we

know that f{1 must be a relation from range(f) to A, so we need only show that for

all b2B there is at most one a2A such that (b,a)2 f{1, i.e. at most one a2A with

(a,b) 2 f. But this is exactly what is given by the injectivity of f. Indeed, we can

also argue in the converse direction, with the result that we have the following

equivalence: a function f: A!B is injective iff its inverse relation f {1 is a function

from range(f) to A.

3.3.2 Surjectivity

Let f: A! B. We say that f is onto B or surjective (with respect to B) iff for all b 2
B there is some a 2 A with f(a) ¼ b. In other words, iff every element of B is the

value of some element of A under f. Equivalently, iff range(f) ¼ B.

For example, if A ¼ f1,2,3g and B ¼ f7,8,9g then the function f that puts

f(1)¼ 9, f(2)¼ 8, f(3)¼ 7 is onto B, but is not onto B 0 ¼ f6,7,8,9g, since it ‘misses

out’ the element 6 2 B 0.

EXERCISE 3.3.2

(a) What does surjectivity mean in terms a digraph for the function?

(b) What does it mean in terms a table for the function?

For some more substantive examples, we look to the number systems. Over Z

both of the functions f(a) ¼ aþ1 and g(a) ¼ 2a are injective, but only f is onto Z,

since the odd integers are not in the range of g. However, if we restrict these two

functions to the set N of natural numbers, then not even f is onto N, since 0 2N is

not the successor of any natural number.
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EXERCISE 3.3.3 (WITH PARTIAL SOLUTION)

(a) Consider the function f(a) ¼ a2 over N, Nþ, Z, Q, R respectively and

determine in each case whether it is surjective.

(b) Show that the composition of two surjective functions is surjective, and

give examples to show that the failure of surjectivity in either of the two

components can lead to its failure for the composition.

Solution to (a): For N, Nþ, Z, Q the answer is negative, since e.g. 2 is in each of

these sets, but there is no number a in any of these sets with a2¼ 2. In common

parlance, 2 does not have a rational square root. For R, the answer is positive,

since 2 does have a real square root: for any real b there is an a2R with a2¼ b.

Both of the terms ‘onto’ and ‘surjective’ are in common use, but the former is

more explicit in that it makes it easier for us to say onto what. We can say simply

‘onto B’, whereas it is rather more longwinded to say ‘surjective with respect to

B’. Whichever of the two terms one uses, it is important to be clear what set B is

intended, since quite trivially every function is onto some set { namely its range!

Alice Box: Terminology for functions

Alice: I’m getting a bit tired of all these terminological variations! Isn’t it

time that you people got together and agreed on a common way of speaking?

Hatter: In mitigation, remember that the concept of function has a very long

history across a number of different mathematical communities. The termi-

nological variants are often traces of that evolution. For example, in this text

we are using the terms ‘converse’ and ‘inverse’ interchangeably. But the

former term was preferred by those focussed on the theory of relations,

while the latter was favoured by those looking primarily at functions. Indeed,

for a long time, function people tended to ignore non-functional relations

altogether. As a result they phrased some matters rather differently saying,

for instance, that the inverse of a function does not exist (whereas we would

say, exists as a relation but not as a function) unless it is injective.

Alice: Traps at every corner!

Hatter: Indeed. Half the trouble that students have with simple mathematics

is due to quirks in the language in which it is conveyed to them. Here is

another example. There is a certain ambiguity when we use the expression f(x),

when f is a function from A to B. Normally, it stands for the unique y2B with

(Continued)
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Alice Box: (Continued)

(x,y) 2 f, i.e. for the value of the function f for argument x. But sometimes it

stands for the function f itself, which is a set of ordered pairs, with the x

merely serving to remind us what letters will be employed to refer to the

arguments. If you read back over this chapter, you will find that we have used

the expression both ways { in the former way in the theory, and the latter in

some of the examples, where it helps us to be brief.

3.3.3 Bijective Functions

A function f: A ! B that is both injective and onto B is said to be a bijection

between A and B. An older term sometimes used is one-one correspondence. An

important fact about bijectivity is that it is equivalent to the inverse being a

function from B. That is, a function f: A! B is a bijection between A and B iff its

inverse f{1 is a function from B to A.

Proof By definition, f is a bijection between A and B iff f is injective and onto

B. As we saw earlier in the chapter, f: A! B is injective iff f{1 is a partial function

from B to A; and moreover f is onto B iff range(f) = B, i.e. iff dom(f{1) = B.

Putting this together, f is a bijection between A and B iff f{1 is a partial function

from B to A with dom(f{1) = B, i.e. iff f{1 is a function from B to A.

Alice box : Proving an equivalence

Alice: Why didn’t you prove this equivalence in the same way as before,

breaking it into two parts, one the converse of the other, and proving each

separately by conditional proof?

Hatter: We could perfectly well have done that. But in this particular case the

argument going in one direction would have turned out to be essentially the

same as its converse, run backwards. So in this case, we can economize by doing

it all as a chain of iffs. However, such an economy is not always available.

EXERCISE 3.3.4

(a) What is a bijection in terms a (i) digraph, (ii) a table for the function?

(b) Show that the inverse of a bijection from A to B is a bijection from B to

A. Hint: you know that it is a function from B to A, so you only need

check out injectivity and surjectivity.
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We end this section with a final remark on inverses. We have seen that the

inverse of a function f: A!B is a relation from f(A)�B back to A, but will not be

a function unless f is injective. However, if we rise one level of abstraction and

take the value of f{1, for a given b2 f(A)� B, to be the set of all a2A such that

f(a)¼ b, then this is always a function on f(A) but into the power set P(A) of A.

With a little abuse of notation, we can write it briefly, with the same notation, as

f{1: f(A)! P(A). An example of this will arise in the chapter on probability.

3.4 Using Functions to Compare Size

One of the many uses of functions is to compare the sizes of sets. In this section, we

will consider only finite sets, although a more advanced treatment could also

consider infinite ones. Recall from Chapter 1 that when A is a finite set, we write

#(A) for the number of elements of A, also known as the cardinality of A. Another

common notation for this is ÅAÅ. We will look at two principles, one for bijections

and one for injections.

3.4.1 The Equinumerosity Principle

Let A,B be finite sets. The equinumerosity principle says : #(A) ¼#(B) iff there

is some bijection f: A! B.

Proof Suppose first that #(A) ¼ #(B). Since both sets are finite, there is

some natural number n with #(A)¼ n¼#(B). Let a1,. . .,an be the elements of A,

and b1,. . .,bn those of B. Let f: A ! B be the function that puts each f(ai) ¼ bi.

Clearly f is injective and onto B. For the converse, let f: A ! B be a bijection.

Suppose A has n elements a1,. . .,an. Then the list f(a1),. . ., f(an) enumerates all the

elements of B, counting none of them twice, so B also has n elements.

A typical application of this principle takes the following form, using only one

half of the iff. We have two sets A,B and want to show that they have the same

cardinality. We look for some function that is a bijection between the two. If we

find one, then we are done.

EXERCISE 3.4.1 (WITH SOLUTION)

(a) Let A be the set of sides of a polygon, and B the set of its vertices. Show

#(A) ¼ #(B).

(b) In a reception, everyone shakes hands with everyone else just once. If

there are n people in the reception, how many handshakes are there?
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Solution:

(a) Let f: A!B be defined by associating each side with its right endpoint.

Clearly this is both injective and is onto B. Hence #(A) ¼ #(B).

(b) Let A be the set of the handshakes, and let B be the set of all unordered

pairs fx,yg of distinct people (i.e. x 6¼ y) from the reception. Define f: A!
B by associating each handshake with the two distinct people involved in

it. Clearly this gives us a bijection between A and B. So we need only ask

how many elements there are in B. Clearly there are n�(n{1) ordered pairs

of distinct people in the reception, and thus n�(n{1)/2 unordered pairs,

since each unordered pair fx,yg with x 6¼ y corresponds to two distinct

ordered pairs (x,y) and (y,x). Thus there are n�(n{1)/2 handshakes.

As these examples reveal, the sought-for bijection can be a quite simple and

obvious one, and often it associates the elements of some rather ‘everyday’ set

(like the set of all handshakes) with some rather more ‘abstract’ one (like the set of

all unordered pairs fx,yg of distinct people from the reception). The bijection

allows us to apply to the everyday set the counting rules that we know for the

abstract one.

3.4.2 The Principle of Comparison

Let A,B be finite sets. The principle of comparison says: #(A)�#(B) iff there is

some injective function f: A! B.

Proof We use the same sort of argument as for the equinumerosity princi-

ple. Suppose first that #(A) � #(B). Since both sets are finite, there is some

n � 0 with #(A) ¼ n, so that #(B) ¼ nþm for some m � 0. Let a1,. . ..,an be the

elements of A, and b1,. . ..,bn,. . .,bnþm those of B. Let f: A ! B be the function

that puts each f(ai) ¼ bi. Clearly f is injective (but not necessarily onto) B. For

the converse, let f: A ! B be injective. Suppose A has n elements a1,. . ..,an.

Then the list f(a1),. . .., f(an) enumerates some (but not necessarily all) the

elements of B, counting none of them twice, so B has at least n elements, i.e.

#(A) � #(B).

Alice Box: Equinumerosity for infinite sets

Alice: You formulated the equinumerosity principle and the principle of

comparison in terms of finite sets, saying cryptically they could also be

formulated for infinite ones. How would you do that?

(Continued)
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Alice Box: (Continued)

Hatter: The first step is to decide what you mean by saying that one set has

the same size or cardinality as another. In the finite case we understand that

notion before we ever hear of bijections, but when the set is infinite we need to

explain what it means. This was done by Georg Cantor towards the end of

the nineteenth century, who simply defined it in terms of bijections: sets A

and B, finite or infinite, are defined to have the same cardinality iff there is a

bijection from one to the other. So the equinumerosity principle becomes true

by definition.

Alice: Doesn’t that give all infinite sets the same cardinality? Isn’t there a

bijection between any two infinite sets?

Hatter: At first sight it might seem so, and indeed the sets N, Nþ, Z and Q

are all equinumerous in Cantor’s sense: it is possible to find a bijection

between any two of them. Any set that has a bijection with N is said to be

countable, so Nþ, Z and Q are countable. But one of Cantor’s fundamental

theorems was to show, surprisingly, that this is not the case for R: it is not

countable { there is no bijection between it and N. Further, he showed that

there is no bijection between any set A and its power set P(A).

Alice: How can you prove this?

Hatter: The proof is ingenious, and short. It uses what is known as the

‘diagonal construction’. But it would take us out of our main path. You

will find it in any good introduction to set theory for students of mathe-

matics, e.g. Paul Halmos’ Na€ive Set Theory.

3.4.3 The Pigeonhole Principle

In applications of the principle of comparison, we typically use only the right-to-

left half of it, formulating it contrapositively as follows. Let A,B be finite sets. If

#(A) > #(B) then no function f: A! B is injective. In other words, if #(A) >

#(B) then for every function f: A! B there is a b 2 B such that b ¼ f(a) for two

distinct a 2 A.

This simple rule is known as the pigeonhole principle, from the example in

which A is the (large) set of letters to be delivered to people in the office, and B is

the (small) set of their pigeonholes. It also has a more general form, as follows. Let

A,B be finite sets. If #(A)> k �#(B) then for every function f: A!B there is a b 2
B such that b ¼ f(a) for at least kþ1 distinct a 2 A.
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The pigeonhole principle is surprisingly versatile as a way of showing that at in

suitable situations, at least two distinct items must have a certain property. The

wealth of possible applications can only be appreciated by looking at examples.

We begin with a very straightforward one.

EXERCISE 3.4.2 (WITH SOLUTION)

A village has 400 inhabitants. Show that at least two of them have the same

birthday, and that at least 34 are born in the same month of the year.

Solution: Let A be the set of people in the village, B the set of the days of the

year, C the set of months of the year. Let f: A ! B associate with each

villager his or her birthday, while g: A ! C associates with the month of

birth. Since #(A) ¼ 400 > 366 � #(B) the pigeonhole principle tells us

that there is a b 2 B such that b ¼ f(a) for two distinct a 2 A. This answers

the first part of the question. Also, since #(A)¼ 400> 396¼ 33 �#(C), the

generalized pigeonhole principle tells us that there is a c 2 C such that c ¼
f(a) for 33þ1 = 34 distinct a 2 A, which answers the second part of the

question.

In this exercise, it was quite obvious what sets A,B and what function f: A!B

to choose. In other examples, this may need more reflection, and sometimes

considerable ingenuity.

EXERCISE 3.4.3 (WITH SOLUTION)

In a club, everyone has just one given name and just one family name. It is

decided to refer to everyone by two initials, the first initial being the first

letter of the given name, the second initial being the first letter of the family

name. How many members must the club have to make it inevitable that

two distinct members are referred to by the same initials?

Solution: It is pretty obvious that we should choose A to be the set of

members of the club. Let B be the set of all ordered pairs of letters from

the alphabet. The function f: A! B associates with each member a pair as

specified in the club decision. Assuming that we are dealing with a standard

English alphabet of 26 letters, #(B) ¼ 26.26 ¼ 676. So if the club has

677 members, the pigeonhole principle guarantees that f(a) ¼ f(a0) for two

distinct a,a0 2 A.
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When solving problems by the pigeonhole principle, always begin by choosing

carefully the sets A,B and the function f: A! B. Indeed, this will often be the key

step in finding the solution. Sometimes, as in the above example, the elements of B

will be rather abstract items, such as ordered n-tuples.

EXERCISE 3.4.4

A multiple-choice exam has 5 questions, each with two possible answers.

Assuming that each student enters a cross in exactly one box of each

question (no unanswered, over-answered, or spoiled papers), how many

students need to be in the class to guarantee that at least four students

submit the same answer paper?

3.5 Some Handy Functions

In this section we look at some very simple functions that appear over and again:

identity, constant, projection and characteristic functions, as well as the deploy-

ment of functions to represent sequences and families. The student may find it

difficult to assimilate all these in one sitting. No matter, they are here to be

recalled whenever needed at a later moment.

3.5.1 Identity Functions

Let A be any set. The identity function on A is the function f: A!A such that for

all a 2 A, f(a) ¼ a. As simple as that! It is sometimes written as iA, or with the

Greek letter iota as �A. It is very important in abstract algebra, and comes up often

in computer science, never at the centre of attention but (like the restriction of a

function) as an everyday tool used almost without thinking.

EXERCISE 3.5.1

(a) Show that the identity function over any set A is a bijection, and is its

own inverse.

(b) Let f: A! B. Show that f8iA ¼ f ¼ iB8f.
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Alice Box: One identity function or many?

Alice: So, for every choice of set A you get a different identity function iA?

Hatter: Strictly speaking, yes.

Alice: Why not define a great big identity function, for once and for all, by

putting i(a) ¼ a for every a whatsoever?

Hatter: Attractive, but there is a technical problem. What would its domain

and range be?

Alice: The universal set, i.e. the set of all things whatsoever.

Hatter: Unfortunately, as we saw in Chapter 1.4, standard set theory as

understood today does not admit such a set, on pain of contradiction. So

we must relativize the concept to whatever ‘local universe’ set U we are

working in. A little bit of a bother, but not too bad in practice.

3.5.2 Constant Functions

Let A,B be non-empty sets. A constant function on A into B is any function f: A!B

such that for some b 2 B we have f(a) ¼ b for all a 2 A.

The order of the quantifiers is vital here: we require that 9b2B 8a2A f(a)¼ b, in

other words that all the elements of A have the same value under f. This is much

stronger than requiring merely that 8a2A 9b2B f(a)¼ b; in fact, that holds for any

function f whatsoever! In general, there is an immense difference between statements

of the form 8x9y(. . .) and corresponding ones of the form 9x8y(. . .). In a later chapter

on the logic of the quantifiers, we will set out systematically the relations between the

various propositions QxQ 0y(. . .), where Q and Q 0 are quantifiers (universal or

existential), x and y are their attached variables, and the expression (. . .) is kept fixed.

EXERCISE 3.5.2

(a) Fix non-empty sets A,B with #(A) ¼ m and #(B) ¼ n. How many

constant functions f: A! B are there?

(b) Show that when #(A)> 1 then no constant function f: A!B is injective,

and when #(B) > 1 then no constant function f: A! B is onto B.

(c) Let f: A ! B and g: B ! C. Show that if either of f, g is a constant

function, then g8f: A! C is a constant function.
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3.5.3 Projection Functions

Let f: A�B ! C be a function of two arguments, and let a 2 A. By the right

projection of f at a we mean the one-argument function fa: B ! C defined by

putting fa(b) ¼ f(a,b) for each b 2 B.

Likewise, letting b2B, the left projection of f at b is the one-argument function

fb: A! C defined by putting fb(a) ¼ f(a,b) for each a 2 A.

In other words, to form the left or right projection of a (two-argument)

function, we hold one of the arguments of f fixed at some value, and consider

the (one-argument) function obtained by allowing the other argument to vary.

3.5.4 Characteristic Functions

Let U be any set fixed as a local universe. For each subset A � U we can define a

function fA: U!f1,0g by putting fA(u)¼ 1 when u 2A and fA(u)¼ 0 when u =2A.

This is known as the characteristic function of A (modulo the universe U). Thus

the characteristic function fA specifies the truth-value of the statement that

u 2 A.

Conversely, when f: U ! f1.0g, we can define the associated subset of U by

putting Af ¼ fu 2 U : f(a) ¼ 1g.
Clearly, there is a bijection between the subsets of U and the functions f: U!

f1.0g, and in fact we can make either do the work of the other. In some contexts,

it is notationally more convenient to work with characteristic functions rather

than subsets.

3.5.5 Families of Sets

In Section 1.5, we introduced sets of sets. They are usually written fAi : i 2 Ig
where the Ai are sets and the set I, called an index set, helps us keep track of them.

Because the phrase ‘set of sets’ tends to be difficult for the mind to process, we also

speak of fAi : i 2 Ig as a collection of the sets Ai; but the term ‘collection’ does not

mean anything new { it is merely to facilitate reading.

We now introduce the subtly different concept of a family of sets. This refers to

any function on a domain I (called an index set) such that for each i2 I, f(i) is a set.

Writing f(i) as Ai, it is thus the set of all ordered pairs (i, f(i)) ¼ (i, Ai) with i 2 I.

The range of this function is the collection fAi : i 2 Ig.
The difference is subtle, and in some contexts sloppiness does not matter. But

in certain situations, notably applications of the pigeonhole principle and other

counting rules that we will come to in a later chapter, it is very important. It can
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happen, for example, that the index set I has n elements, say I¼ f1,. . .ng, but the

function f is not injective, say f(1) ¼ f(2), i.e. A1 ¼ A2. In that case the family,

containing all the pairs (i, Ai) with i � n, has n elements, but the collection,

containing all the sets Ai with i � n, has fewer elements since A1 ¼ A2.

Once more, the substance of mathematics is intricately entwined with the way

that it uses language. The convention of subscripting, wherever it occurs, is in

effect an implicit way of describing a function. For example, when we say ‘let pi be

the ith prime number, for any i 2 Nþ’, then we are implicitly considering the

function p: Nþ !Nþ such that each p(i) is the ith prime number. The notation

with subscripts can often be easier to read than the standard function notation, as

it gets rid of brackets. And in some contexts, all we really need to know about

the function is its range, so in those contexts we can treat it as merely a collection

of sets.

3.5.6 Sequences

The uses of functions are endless. In fact, their role is so pervasive that some

mathematicians prefer to see them, rather than sets, as providing the bedrock of

their discipline. We will not venture into this question, which belongs rather to

the philosophy of mathematics, but instead illustrate the versatility of functions

by seeing how they can clarify the notion of a sequence.

In computer science as in mathematics itself, we often need to consider

sequences a1,a2,a3,. . . of items. The items ai might be numbers, sets or other

mathematical objects; in computer science they may be the instructions in a

program, or steps in its execution. The sequence itself may be finite, with just n

terms a1,. . .,an for some natural number n, or infinite with a term ai for each

positive integer i, in which case we usually write it in an informal suspended dots

notation, as a1,a2,a3,. . . . But what is such a sequence?

It is convenient to identify an infinite sequence a1,a2,a3,. . . with a function

f: Nþ! A for some appropriately chosen set A, with f(i) ¼ ai for each i 2 Nþ.

The ith term in the sequence is thus just the value of the function for argument

(input) i.

When the sequence is finite, there are two ways to go. We can continue to

identify it with a function f: Nþ! A with f(i) ¼ ai for each i � n 2Nþ and with

f(nþj) = f(n) for all j 2 Nþ, so that the function becomes constant in its value

from f(n) upwards. Or, more intuitively, we can take it to be a function f: fi� n 2
Nþg ! A, i.e. as a partial function on Nþ with domain fi � n 2Nþg. It doesn’t

matter really which way we do it; in either case we have made a rather vague

notion sharper by explaining it in terms of functions.
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Alice Box: n-tuples, sequences, strings and lists

Alice: I’m getting confused. So a finite sequence of elements of A is a function

f: fi� n2Nþg!A and you write it as a1,a2,. . .,an. But what’s the difference

between this and an ordered n-tuple (a1,a2,. . .,an)? While we are at it, I have

been reading around, and I also find people talking about finite strings and

finite lists. Are they all the same, or different?

Hatter: Well, er. . .

Alice: They come at me with different notations. Tuples and sequences are

written as above, but strings are written just as a1a2. . .an with neither commas

nor external brackets. Lists are written<a1,a2,. . .,an> or sometimes with further

internal brackets, say <a1<a2,. . .,an>>. And the symbols used for the empty

tuple, sequence, string and list are all different. Help! What is going on?

Hatter: Indeed, this is quite confusing, not to use a more impolite term. Let me

try to sort it out for you, in a rather informal manner. At bottom, these are all

the same kind of object, but built up in different ways and with different tools

for their manipulation. The most abstract concept is that of an n-tuple. We

don’t care what it is; all we care about is the criterion for identity that we

mentioned in the previous chapter: (x1,x2,. . .,xn) ¼ (y1,y2,. . .,yn) iff xi ¼ yi for

all i from 1 to n. An n-tuple can be anything that satisfies that condition.

Alice: And sequences?

Hatter: They are more specific. As we have said, a sequence is a function f: fi� n

2 Nþg ! A. Sequences happen to satisfy the identity criterion that I men-

tioned, and so we may regard them as a particular kind of tuple. Mathemati-

cians like them because they are accustomed to working with functions on Nþ.

Alice: Strings?

Hatter: Think of them as tuples, usually of symbols, that come equipped with a

tool for putting them together and taking them apart. This tool is the operation

of concatenation, which consists of taking any strings s and t and forming a

string con(s,t). In the case of symbols, this is the longer symbol formed by writing

s and then immediately to its right the other component symbol t. When we talk

of strings, we are thinking of tuples where concatenation is the only available

way, or the only allowed one, of building or dismantling them. Computer

scientists like them, as concatenation is an operation that they are familiar with.

Alice: And lists?

Hatter: They too are tuples, again often of symbols, and again equipped with

a single tool for their construction and decomposition. But this time the tool

(Continued)
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Alice Box: (Continued)

is different, and more limited in its power. It can be thought of as a restricted

form of concatenation. We are allowed to take any list y and put in front of it an

element a of the base set A of elementary symbols (often called the alphabet for

constructing lists). This forms the slightly longer list<a,y>. Here a is called the

head of the list, and y is the tail of the list<a,y>. If y itself is compound, say y¼
<b,x>where b2A and x is a shorter list, then<a,y>=<a,<b,x>>, and so on.

Being a restricted form of concatenation, the operation is given the very similar

name cons, so that cons(a,y) ¼ <a,y>. The important thing about the cons

operation is that while it can take any list as its second argument, it can take

only elements of the alphabet A as its first argument. It is in effect a restriction of

the first argument of the concatenation operation to the alphabet set A.

Alice: Why this restriction?

Hatter: One reason is that is satisfies a special mathematical condition of unique

decomposability,which concatenation, for example,doesnot satisfy.This permits

us to carry out definitions by structural recursion, as we will explain in Chapter 4.

Another reason is that it is particularly easy to implement on a computer.

Alice: So the basic difference between tuples, sequences, strings and lists is

not so much what they are but what tools they come with, to build and

manipulate them?

Hatter: That’s quite a good way to put it! However, after making these fine

distinctions, I must warn you yet again that authors can be rather loose in the way

they write. And, just to annoy you further, strings are often also called words.

FURTHER EXERCISES

3.1. Partial functions

(a) Characterize the notion of a partial function from A to B in terms of (i)

its table and (ii) its digraph as a relation.

(b) Let R be a relation from A to B. Show that it is a partial function from A

to B iff it is a function from dom(R) to B.

3.2. Image, closure

(a) The floor function from R into N is defined by putting bxc to be the

largest integer less than or equal to x. What are the images under the

floor function of the sets [0,1]¼ fx 2R : 0� x�1g, [0,1)¼ fx 2R : 0�
x <1g, (0,1] ¼ fx 2 R : 0 < x �1g, (0,1) ¼ fx 2 R : 0 < x <1g?
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(b) Show that when f(A) � A then f[A] ¼ A.

(c) Let f: A! B be a function from set A into set B. Recall that for each

b 2 B, f {1(b) is the set fa 2 A: f(a) ¼ bg. (i) Show that the family of all

these sets f{1(b) for b2 f(A)�B is a partition of A in the sense defined in

Chapter 2. (ii) Is this still the case if we include in the family the sets

f {1(b) for b 2 B \ f(A)?

(d) Show that for any partition of A, the function f taking each element

a 2A to its cell is a function on A into the power set P(A) of A with the

partition as its range.

3.3. Injections, surjections, bijections

(a) Is the floor function from R into N injective? (ii) Is it onto N?

(b) Use the results of exercises in this chapter to show that the composition

of two bijections is a bijection.

(c) Use the equinumerosity principle to show that there is never any

bijection between a finite set and any of its proper subsets.

(d) Give an example to show that there can be a bijection between an

infinite set and certain of its proper subsets.

(e) Let A,B be sets with B finite. Show that when f: A! B is onto B (but

not necessarily injective), then there is an injective function g: B! A

with g(b)2 f {1(b) for all b2B. Hint: To get the idea, draw a picture of a

simple example.

(f) Use the principle of comparison to show that for finite sets A,B, if there

are injective functions f : A! B and g: B! A, then there is a bijection

from A to B.

3.4. Pigeonhole principle

(a) Use the general form of the pigeonhole principle to show that of any

seven propositions, there are at least four with the same truth-value.

(b) Let K ¼ fn 2 Nþ : n � 16g. How many distinct numbers must be

selected from K to guarantee that the sum of two of them is 18? Hint:

Let B be the set of all unordered pairs fx,ygwith x,y 2K and xþy¼ 18.

3.5. Handy functions

(a) Describe the characteristic function, for the local universe of positive

integers, of (i) the set of all odd numbers, (ii) the set of all prime numbers.
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(b) Describe the right projection of the multiplication function x �y at the

value x ¼ 3. Also the left projection at the value y ¼ 3. Are they the

same function? Why?
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4
Recycling Outputs as Inputs: Induction

and Recursion

Chapter Outline

This chapter introduces induction and recursion, which are omnipresent in com-

puter science.

The simplest context in which they arise is in the domain of the positive

integers, and that is where we begin. We explain induction as a method for

proving facts about the positive integers, and recursion as a method for defining

functions on the same domain. We will also distinguish two different methods for

evaluating such functions.

From this familiar terrain, the basic concepts of recursion and induction can

be extended to structures, processes and procedures of many kinds, not only

numerical ones. Particularly useful for computer scientists are the forms known

as structural induction and recursion, and we give them special attention. We will

look at structural recursion as a way of defining sets, structural induction as a way

of proving things about those sets, and then structural recursion once more as a

way of defining functions with recursively defined domains. At this last point

special care is needed, as the definitions of such functions succeed only when a

special condition of unique decomposition is satisfied. Happily, it holds in many

computer science applications.

The broadest and most powerful kind of induction/recursion may be formulated

for sets of any kind, provided only they are equipped with a relation that is well-

founded, in a sense we explain. All otherkinds may be seen as special cases of thatone.

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 4, � Springer-Verlag London Limited 2008
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In a final section we look at the notion of a recursive program, and see how the

ideas that we have developed in the chapter are manifested there.

4.1 What are Induction and Recursion?

The two words are used in different contexts. ‘Induction’ is the term more commonly

applied when talking about proofs. ‘Recursion’ is the one used in connection with

definitions and constructions. We will follow this tendency, speaking of inductive

proofs and recursive definitions. But it should not be thought that they answer to

two fundamentally different topics: the same basic idea is involved in each.

What is this basic idea? It will help if we look for a moment at the historical

context. We are considering an insight that goes back to ancient Greece and India,

but whose explicit articulation had difficulty breaking free from a long-standing

rigidity. From the time of Aristotle onwards it was a basic tenet of logic, and of

science in general, that nothing should ever be defined in terms of itself, on pain of

making the definition circular. Nor should any proof assume what it is setting out

to prove, for that too would create circularity.

Taken strictly, these precepts remain perfectly true. But it has been realized that

definitions, proofs, and procedures may also ‘call upon’ themselves, in the sense that

later steps may systematically appeal to the outcome of earlier steps. In suitable

contexts, the value of a function for a given value of its argument may be defined in

terms of its value for smaller arguments; a proof of a fact about an item may assume

that we have already proven the same fact about earlier items; an instruction telling

us how to carry out steps of a procedure or program may specify this in terms of what

the previous steps have already done. In each case, what we need is a clear stepwise

ordering of the domain we are working on, with a clearly specified starting point.

What do these requirements mean? To clarify them we begin by looking at the

simplest context in which they are satisfied: the positive integers. There we have a

definite starting point, 1. We also have a clear stepwise ordering, namely the

passage from any number n to its immediate successor nþ 1. This order exhausts

the domain, in the sense that every positive integer may be obtained by applying

the step finitely many times from the starting point.

Not all number systems are of this kind. The set Z of all integers, negative as

well as positive, has no starting point under its natural ordering. The set Q of

rational numbers not only lacks a starting point, but it also has the wrong kind of

order. Conversely, the use of recursion and induction need not be confined to

number systems. They can be carried out in any structure satisfying certain

abstract conditions that make precise the vague requirement given above. But

we will come to these later in the chapter.
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4.2 Proof by Simple Induction on the Positive
Integers

4.2.1 An Example

Suppose that we want to find a formula that identifies explicitly the sum of the

first n positive integers. We might calculate a few cases, seeing that 1¼ 1, 1þ 2¼
3, 1 þ 2 þ 3 ¼ 6, 1 þ 2 þ 3 þ 4 ¼ 10, etc. In other words, writing �fi : 1 � i � ng
or more briefly just f(n) for the sum of the first n integers, we see by calculation

that f(1)¼ 1, f(2)¼ 3, f(3)¼ 6, f(4)¼ 10, etc. After some experimenting, we may

hazard the conjecture (or read somewhere) that quite generally f(n)¼ n�(nþ1)/2.

But how can we prove this?

If we continue calculating the sum for specific values of n without ever finding

a counterexample to the conjecture, we may become more and more convinced

that it is correct; but that will never give us a proof that it is so. For no matter how

many specific instances we calculate, there will always be infinitely many still to

come. We need another method { and that is supplied by simple induction. Two

steps are needed.

l The first step is to note that the conjecture f(n)¼ n �(nþ1)/2 holds for the initial

case that n ¼ 1, i.e. that f(1) ¼ 1 �(1þ1)/2. This is easy to verify, indeed

immediate, since we have already noticed that f(1) ¼ 1 and clearly also

1 �(1þ1)/2 ¼ 1. This step is known as the basis of the induction.

l The second step is prove a general statement: whenever the conjecture f(n) ¼
n �(nþ1) holds for n¼ k, then it holds for n¼ kþ1. In other words, we show that

for all positive integers k, if f(k) ¼ k �(kþ1)/2 then f(kþ1) ¼ (kþ1) �(kþ2)/2.

This general if-then statement is known as the induction step of the proof. Notice

how the equality in its consequent is formulated by substituting kþ1 for k in the

equality in its antecedent.

Taken together, these two are enough to establish our original conjecture. The

first step shows that the conjecture holds for the number 1. The induction step may

then be applied to that to conclude that it also holds for 2; but it may also be applied

to that to conclude that the conjecture also holds for 3, and so on for any positive

integer n. We don’t actually have to perform all these applications one by one {

indeed, we couldn’t do so, for there are infinitely many of them. But we have a

guarantee, from the induction step, that each of these applications could be made.

In the example, how do we go about proving the induction step? As it is a

universally quantified conditional statement about all positive integers k, we let k

be an arbitrary positive integer, suppose the antecedent to be true, and show that

the consequent must also be true. In detail:
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Let k be an arbitrary positive integer. Suppose f(k) ¼ k �(kþ1)/2. We need to

show that f(kþ1) ¼ (kþ1) �(kþ2)/2. Now:

fðkþ 1Þ ¼ 1þ 2þ . . .þ kþ ðkþ 1Þ by the definition of the function f

¼ ð1þ 2þ . . .þ kÞ þ ðkþ 1Þ arranging brackets

¼ fðkÞ þ ðkþ 1Þ by the definition of the function f again

¼ k � ðkþ 1Þ=2þ ðkþ 1Þ by the supposition fðkÞ ¼ k � ðkþ 1Þ=2

¼ ½k � ðkþ 1Þ þ 2ðkþ 1Þ�=2 by elementary arithmetic

¼ ðk2 þ 3 kþ 2Þ=2 by elementary arithmetic

¼ ðkþ 1Þ � ðkþ 2Þ=2 by elementary arithmetic

which completes the proof of the induction step, and thus of the proof as a whole! The

key link in the chain of equalities is the italicized one, where we apply the supposition.

4.2.2 The Principle Behind the Example

The rule used in this example is called the simple principle of mathematical induction,

and may be stated as follows. Consider any property that is meaningful for positive

integers. To prove that every positive integer has the property, it suffices to show:

Basis : The least positive integer 1 has the property;

Induction step : Whenever a positive integer k has the property, then so

does kþ 1:

The same principle may be stated in terms of sets rather than properties.

Consider any set A � Zþ. To establish that A ¼ Zþ, it suffices to show:

Basis : 1 2 A;

Induction step : Whenever a positive integer k 2 A; then also kþ 1 2 A:

Usually, checking the basis is a matter of trivial calculation. Establishing the

induction step is carried out in the manner of the example: we let let k be an

arbitrary positive integer, suppose that k has the property (that k 2 A), and show

that kþ1 has the property (that kþ1 2 A). Of course, tougher problems require

more sweat in the last part, but still within this general framework.

Important terminology: Within the induction step, the supposition that k has

the property, is called the induction hypothesis. What we set out to show from

that supposition, i.e. that kþ1 has the property, is called the induction goal.

90 4. Recycling Outputs as Inputs: Induction and Recursion



EXERCISE 4.2.1 (WITH SOLUTION)

Use the principle of induction over the positive integers to show that for

every positive integer n, the sum of the first n odd integers is n2.

Solution: Write f(n) for the sum of the first n odd integers, i.e. for 1þ 3þ. . .þ
(2 n{1). We need to show that f(n) ¼ n2 for every positive integer n.

Basis: We need to show that f(1)¼ 12. But clearly f(1)¼ 1¼ 12 and we are

done.

Induction step: Let k be any positive integer, and suppose (induction hypoth-

esis) that the property holds when n¼ k, i.e. suppose that f(k)¼ k2. We need to

show (induction goal) that it holds when n ¼ kþ1, i.e. that f(kþ1) ¼ (kþ1)2.

Now:

fðkþ 1Þ ¼ 1þ 3þ . . .þ ð2 k� 1Þ þ ð2ðkþ 1Þ � 1Þ by definition of f

¼ ð1þ 3þ . . .þ ð2 k� 1ÞÞ þ ð2ðkþ 1Þ � 1Þ arranging brackets

¼ fðkÞ þ 2ðkþ 1Þ � 1 also by definition of f

¼ k2 þ 2ðkþ 1Þ � 1 by the induction hypothesis

¼ k2 þ 2 kþ 1 by elementary arithmetic

¼ ðkþ 1Þ2 again by elementary arithmetic:

What if we wish to prove that every natural number has the property we are

considering? We proceed in exactly the same way, except that we start with

0 instead of 1:

Basis : The least natural number 0 has the property,

Induction step : Whenever a natura number k has the property, then so does kþ1.

In the language of sets:

Basis : 0 2 A,

Induction step: Whenever a natural number k 2 A, then also k þ 1 2 A.

Sometimes it is more transparent to state the induction step in an equivalent

way using subtraction by one. For natural numbers, in the language of properties:

Induction step : For every natural number k > 0, if k�1 has the property, then so

does k.
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In the language of sets:

Induction step: For every natural number k> 0, if k�1 2 A, then also k 2 A.

Note carefully the proviso k > 0: this is needed to ensure that k{1 is a natural

number when k is. If we are inducing over the positive integers only, then of course

the proviso is k > 1.

EXERCISE 4.2.2 (WITH SAMPLE SOLUTION)

Take the last formulation of the induction step, and state it in (equivalent)

contrapositive form.

Solution: For every natural number k > 0, if k =2 A, then also k{1 =2 A.

EXERCISE 4.2.3 (WITH SOLUTION)

In Chapter 3, we used the pigeonhole principle to show that in any reception

attended by n � 1 people, if everybody shakes hands just once with every-

one else, then there are n �(n{1)/2 handshakes. Show this again using the

simple principle of induction over the positive integers.

Solution:

Basis: We show this for the case n¼ 1. In this case there are 0 handshakes,

and 1 �(1{1)/2 ¼ 0, so we are done.

Induction step: Let k be any positive integer, and suppose (induction hypoth-

esis) that the property holds when n¼ k, i.e., suppose that when there are just k

people, there are just k�(k{1)/2 handshakes. We need to show (induction goal)

that it holds when n ¼ kþ1, in other words, that when there are just kþ1

people, there are (kþ1)�((kþ1){1)/2¼ k�(kþ1)/2 handshakes.

Consider any one of these kþ1 people, and call this person a. Then (by

an exercise fom the end of Chapter 1) the total number of handshakes is

equal to the number involving a plus the number not involving a. Clearly,

since a shakes hands just once with everyone else, there are just k hand-

shakes of the former kind. Since there are just k people in the reception other

than a, we know by the induction hypothesis that there are k �(k{1)/2

handshakes of the latter kind. Thus there is a total of k þ k �(k{1)/2

handshakes. It remains to check by elementary arithmetic that k þ
k �(k{1)/2 ¼ k �(kþ1)/2, as follows:
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kþ k � ðk� 1Þ=2 ¼ ð2 kþ k � ðk� 1ÞÞ=2

¼ ð2 kþ k2 � kÞÞ=2

¼ ðk2 þ kÞÞ=2

¼ k � ðkþ 1Þ=2 as desired:

This exercise illustrates the fact that a problem can sometimes be tackled in

two ways { either directly as in Chapter 3, or by induction as here. Sometimes one

is quicker, sometimes the other.

It also illustrates the need to keep clearly in mind what the induction hypoth-

esis and induction goal are. Unless they are made explicit, it is easy to become

confused. There is rarely any difficulty with the basis of an induction, but

students often get into a mess with the induction step because they have not

identified clearly what it is, and what its two components (hypothesis, goal) are.

Finally, it is good practice to separate in one’s mind the general strategy of the

induction from whatever numerical calculations may come up within its

execution.

Alice Box: n versus k

Alice: Why do you use the variable n when you state the general proposition to

be proven by induction, but the variable k when you prove the induction step?

Hatter: Just convention. We could use any other two variables.

Alice: Why not just one, say n?

Hatter: With careful formulation it could be done. But it is easy to get mixed

up if you do that. It is usually easier to write (and read) when two distinct,

conventionally chosen, variables like n and k are used.

4.3 Definition by Simple Recursion on the Natural
Numbers

We now dig below the material of the preceding section. Roughly speaking, one

can say that underneath every inductive proof lurks a recursive definition. In

particular, when f is a function on the natural numbers (or positive integers) and

we can prove inductively something about its behaviour, then f itself may be

defined (or at least characterized) in a recursive manner.

For an example, consider again the function f used in the first example of this

chapter. Informally, f(n) was understood to be the sum 1 þ 2 þ 3 þ. . .þ n of the
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first n positive integers. The reason why induction could be applied to prove that

f(n) ¼ n.(nþ1)/2 is that the function f can itself be defined inductively or, as

usually said in this context, recursively.

What would such a definition look like? As one would expect, it consists of a basis

giving the value of f for the least positive integer argument 1, and a recursive (or

inductive) step giving the value of f for any argument nþ1 in terms of its value for

argument n. Thus, in a certain sense the function is being defined in terms of itself, but

in a non-circular manner: the value f(nþ1) is defined in terms of f(n) with the lesser

argument n. Specifically, in our example, the basis and recursive step are as follows:

Basis of definition: fð1Þ ¼ 1

Recursive step of definition: fðnþ 1Þ ¼ fðnÞ þ ðnþ 1Þ:

This way of expressing the recursive step, using addition by 1, is sometimes

called recursion by pattern-matching. Another way of writing it uses subtraction

by 1, in our example as follows:

Recursive step of definition : when n41 then fðnÞ ¼ fðn� 1Þ þ n:

Other ways of writing recursive definitions are also current among computer

scientists. In particular, one can think of the basis and induction step as being

limiting and principle cases respectively, writing in our example:

If n ¼ 1 thenfðnÞ ¼ 1

If n41 thenfðnÞ ¼ fðn� 1Þ þ n:

This can also be expressed in the popular if-then-else form:

If n ¼ 1 thenfðnÞ ¼ 1

Else fðnÞ ¼ fðn� 1Þ þ n

And some computer scientists like to abbreviate this further to the ungram-

matical declaration:

fðnÞ ¼ if n ¼ 1 then 1 elsefðn� 1Þ þ n

which can look like mumbo-jumbo to the uninitiated.

All of these formulations are equivalent. You will meet each of them in

applications, and so should recognize them. The choice is partly a matter of

personal preference, partly a question of which one allows you to get on with

the problem in hand with the least clutter.
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EXERCISE 4.3.1 (WITH PARTIAL SOLUTION)

(a) Define recursively the following functions f(n) on the positive integers:

(i) The sum 1 þ 3 þ. . .þ (2n{1) of the first n odd integers

(ii) The sum 2 þ 4 þ. . .þ 2n of the first n even integers

(b) Show by induction that the sum of the first n even integers equals

n �(nþ1).

(c) Give another proof of (b) without a fresh induction, but making use of

the already established fact that the sum of the first n positive integers

is n �(nþ1)/2.

(d) Define recursively the function that takes a natural number n to 2n.

This is called the exponential function.

(e) Define recursively the product of the first n positive integers. This is

known as the factorial function, written n! and pronounced ‘n factorial’.

(f) Use the recursive definition of the functions concerned to show that for

all n� 4, n!> 2n. Hint: Here the basis will concern the case that n ¼ 4.

Comments on (d{f) The factorial and exponentiation functions are both

very important in computer science, as indications of the alarming way in

which many processes can grow in size (length, memory requirements, etc)

as inputs increase. In Chapter 1 we saw that exponentiation already gives

unmanageable rates of growth; the exercise shows that factorial is worse.

Solution to (d{f):

(d) Basis of definition: 20 ¼ 1. Recursive step of definition: 2nþ1 ¼ 2�2n.

(e) Basis of definition: 1!¼ 1. Recursive step of definition: (nþ 1)!¼ (nþ 1)�n!

(f) Basis of proof: We need to show that 4! > 24. This is immediate by

calculation, with 4!¼1�2�3�4¼ 24> 24¼ 2�2�2�2¼ 16. Induction step

of proof: Let k be any positive integer with k � 4. Suppose that k! > 2k

(induction hypothesis). We need to show that (kþ1)!> 2kþ1 (induction

goal). This can be done as follows:

ðkþ 1Þ! ¼ ðkþ 1Þ � k! by definition of the factorial function

4ðkþ 1Þ � 2k by the induction hypothesis

42 � 2k since k � 4

¼ 2kþ1 by definition of the exponential function.
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4.4 Evaluating Functions Defined by Recursion

Go back yet again to the first function that we defined by recursion, the sum f(n)

of the first n positive integers. Suppose that we want to calculate f(7). There are

basically two ways of doing it.

One very obvious way is bottom-up. We first calculate f(1), use it to get f(2),

use it for f(3), and so on. Thus we have:

fð1Þ ¼ 1

fð2Þ ¼ fð1Þ þ 2 ¼ 1þ 2 ¼ 3

fð3Þ ¼ fð2Þ þ 3 ¼ 3þ 3 ¼ 6

fð4Þ ¼ fð3Þ þ 4 ¼ 6þ 4 ¼ 10

fð5Þ ¼ fð4Þ þ 5 ¼ 10þ 5 ¼ 15

fð6Þ ¼ fð5Þ þ 6 ¼ 15þ 6 ¼ 21

fð7Þ ¼ fð6Þ þ 7 ¼ 21þ 7 ¼ 28:

There is one application of the base clause and six of the recursion clause. Each

application is accompanied, as needed, by arithmetic simplification. Each of the seven

steps fully eliminates the function sign f and provides us with a specific numeral.

The other way of proceeding, at first a little less obvious, is top-down, also known as

the process of unfolding the recursive definition or tracing the function. It is as follows:

fð7Þ ¼ fð6Þ þ 7

¼ ðfð5Þ þ 6Þ þ 7

¼ ððfð4Þ þ 5Þ þ 6Þ þ 7

¼ ðððfð3Þ þ 4Þ þ 5Þ þ 6Þ þ 7

¼ ððððfð2Þ þ 3Þ þ 4Þ þ 5Þ þ 6Þ þ 7

¼ ðððððfð1Þ þ 2Þ þ 3Þ þ 4Þ þ 5Þ þ 6Þ þ 7

¼ ðððððð1þ 2Þ þ 3Þ þ 4Þ þ 5Þ þ 6Þ þ 7

¼ ðððð3þ 3Þ þ 4Þ þ 5Þ þ 6Þ þ 7

¼ ððð6þ 4Þ þ 5Þ þ 6Þ þ 7

¼ ðð10þ 5Þ þ 6Þ þ 7

¼ ð15þ 6Þ þ 7

¼ 21þ 7

¼ 28
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In this calculation, we begin by writing the expression f(7), make a substitu-

tion for it as authorized by the recursion clause of the definition, then in that

expression substitute for f(6) etc, until after six steps we can at last apply the basis

to f(1) to emerge with a fully numerical expression not containing f. At that point

we begin simplifying the numerical expression until, in another six steps, we have

got it in the form of a standard numeral.

Which is the better way to calculate? In this example, it does not make a

significant difference. Indeed, quite generally, when the function is defined using

simple recursion of the kind described in this section, the two modes of calculation

will be of essentially the same length. The second one looks longer, but that is

because we have left all arithmetic simplifications to the end (as is customary

when working top-down) rather than doing them as we go. Humans often prefer

the first mode, for the psychological reason that it gives us something ‘concrete’ at

each step; but a computer would not care.

Nevertheless, when the function is defined by more sophisticated forms of

recursion, which we will describe in the following sections, the situation is very

different. It can turn out that one, or the other, of the two modes of evaluation is

dramatically more economical in resources of memory or time.

Such economies are of little interest to the traditional mathematician, but

they are of great importance for the computer scientist. They may make the

difference between a feasible calculation procedure and one that, in a given state

of technology, is quite unfeasible.

EXERCISE 4.4.1

Evaluate 6! bottom-up and then again top-down (unfolding).

4.5 Cumulative Induction and Recursion

We now turn to some rather more sophisticated forms of recursive definition and

inductive proof.

4.5.1 Recursive Definitions Reaching Back More Than One
Unit

In definitions by simple recursion such as that of the factorial function, we reached

back only one notch at a time. In other words, the recursion step defined f(n) out

of f(n{1). But sometimes we want to reach back further. A famous example is the
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Fibonacci function on the natural numbers, so named after an Italian mathema-

tician who considered it in the year 1202, and which has found surprisingly many

applications in computer science, biology and elsewhere. To define it we use

recursion. The basis has two components:

F ð0Þ ¼ 0

F ð1Þ ¼ 1:

So far just like the identity function. But then, in the recursion step Fibonacci

takes off:

F ðnÞ ¼ F ðn� 1Þ þ F ðn� 2Þ whenever n � 2:

The Fibonacci function illustrates the way in which a top-down evaluation by

unfolding can lead to great inefficiencies in computation. Beginning the computa-

tion of F(8) top-down we have to make the following calls:

In this table, each cell in a row is split into two in the row below, following the

recursive rule for the Fibonacci function, so that value of each cell equals the sum

of the values in the two cells immediately below. The table is not yet complete { it

hasn’t even reached the point where all the letters F are eliminated and the

arithmetic simplifications begin { but it is already clear that there is a great

deal of repetition. The value of F(6) is calculated twice, that of F(5) three times,

F(4) five times, F(3) eight times (including the one still to come in the next row).

Indeed, when calculating F(n), the number of times each F(k) is calculated itself

follows a Fibonacci function run backwards from nþ1. For example, to calculate

F(8), each F(k) for k � 8þ1 ¼ 9 is calculated F(9{k) times. Unless partial

calculations are saved and recycled in some manner, the inefficiency is high.

EXERCISE 4.5.1

(a) Express the definition of the Fibonacci function in pattern-matching

form, and then again in if-then-else form.

(b) Carry out a bottom-up evaluation of F(8).

Table 4.1 Calls when computing F(8) top-down.

F(8)

F(7) F(6)

F(6) F(5) F(5) F(4)

F(5) F(4) F(4) F(3) F(4) F(3) F(3) F(2)

F(4) F(3) F(3) F(2) F(3) F(2) F(2) F(1) F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

etc
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On the other hand, there are cases in which evaluation bottom-up can

be less efficient. Here is a simple example. Define f as follows:

Basis : fð0Þ ¼ 2

Recursion step : fðnÞ ¼ fðn� 1Þn for odd n40; fðnÞ ¼ fðn=2Þ for

even n40

To calculate f(8) by unfolding is quick and easy: f(8) ¼ f(4) ¼ f(2) ¼
f(1) by three applications of the second case of the recursion step and

finally f(1)¼ f(0)1¼ 21¼ 2 by the first clause of the recursion step and the

basis. On the other hand, if we were to calculate f(8) bottom-up without

introducing shortcuts, we would pass through each of f(0) to f(8) doing

unnecessary work on the odd values. We will see a more dramatic example

shortly.

4.5.2 Proof by Cumulative Induction

There is no limit to how far a recursive definition may reach back when defining

f(n), and so it is useful to have a form of proof that permits us to do the same. It is

called cumulative induction, sometimes also known as course-of-values

induction.

Formulated for the natural numbers, in terms of properties, the principle of

cumulative induction is as follows: To show that every natural number has a

certain property, it suffices to show the basis and induction step:

Basis : 0 has the property:

Induction step : For every natural number k; if every natural number j5k

has the property, then k itself also has the property:

The same idea can be used when our induction begins higher than 0. To show

that every natural number n � a has a certain property, it suffices to show the

corresponding basis and induction step:

Basis : a has the property:

Induction step : For every natural number k � a; if every natural number j

with a � j 5 k has the property, then k itself also has the property:
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EXERCISE 4.5.2 (WITH SOLUTION)

(a) Formulate the induction step of the principle of cumulative induction

contrapositively.

(b) Use cumulative induction to show that every positive integer n � 2 is

the product of (one or more) prime numbers.

Solution:

(a) For every natural number k, if k lacks the property, then there is a

natural number j < k that lacks the property.

(b) Basis: We need to show that 2 has the property. Since 2 is itself prime,

we are done.

Induction step: Let k be any positive integer with k� 2. Suppose (induction

hypothesis) that every positive integer j with 2� j< k has the property. We

need to show (induction goal) that k also has it. There are two cases to

consider. If k is prime, then we are done. On the other hand, if k is not prime,

then by the definition of prime numbers k ¼ a �b where a, b are positive

integers � 2. Hence a < k and b < k. So we may apply the induction

hypothesis to get that each of a, b has the property, i.e. is the product of

(one or more) prime numbers. Hence their product is too, and we are done.

In this exercise we have kept things brief by speaking of ‘the property’ when we

mean ‘the property of being the product of two prime numbers’. The example was

simple enough for it to be immediately clear what property we are interested in; in

more complex examples you are advised to take the precaution of stating the

property in full at the beginning of the proof.

Logic Box: Vacuous basis for cumulative induction

An interesting feature of proof by cumulative induction is that, strictly

speaking, the basis is also covered by the induction step, and so is redundant!

This contrasts with simple induction, where the basis is quite independent of

the induction step and always needs to be established separately.

The reason for this redundancy is that there are no natural numbers less than

0. Hence, vacuously, every natural number j < 0 has whatever property is

under consideration, so that by the induction step, 0 itself has the property.

Nevertheless, even for cumulative induction it is customary to formulate

the basis explicitly and to check it out separately. Even though the basis is

(Continued)
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Alice Box: (Continued)

redundant, this is good practice. It acts as a double-check that we did not

overlook some peculiarity of zero when establishing the induction step.

EXERCISE 4.5.3

Use cumulative induction to show that for every positive integer n, F(n) is

even iff n is divisible by 3, where F is the Fibonacci function.

4.5.3 Simultaneous Recursion and Induction

When a function has more than one argument, its definition will have to take

account of both of them. If the definition is recursive, sometimes we can get away

with recursion on just one of the arguments, holding the others as parameters. A

simple example is the recursive definition of multiplication over the natural

numbers, using addition, which can be expressed as follows:

Basis : ðm � 0Þ ¼ 0

Recursion step : m � ðnþ 1Þ ¼ ðm � nÞ þm

The equality in the recursion step is usually taught in school as a fact about

multiplication, which is assumed to have been defined or understood in some

other way. In Peano’s axiomatization of arithmetic in the context of first-order

logic, the equality is treated as an axiom of the system. But here we are seeing it as

the recursive part of a definition of multiplication, given addition. The same

mathematical edifice can be built in many ways!

EXERCISE 4.5.4

Give a recursive definition of the power function that takes a pair (m,n) to

mn, using recursion on the second argument only.

When a two-argument function is defined in this way, then inductive proofs

about it will tend to follow the same pattern, with induction carried out on the

argument that was subject to recursion in the definition.

But sometimes we need to define functions of two (or more) arguments with

recursions on each of them. This is called definition by simultaneous recursion.

A famous example is the Ackermann function. It has two arguments and, in one of

its variants (due to Ro�sza Pe�ter), is defined as follows:
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Að0; nÞ ¼ nþ 1

Aðm; 0Þ ¼ Aðm� 1; 1Þ for m40

Aðm;nÞ ¼ Aðm� 1; Aðm;n� 1ÞÞ for m;n40

Alice Box: Basis and induction step

Alice: One minute! What is the basis and what is the recursion step here?

There are three clauses.

Hatter: The first clause gives the basis. Although it covers infinitely many

cases, and uses a function on the right hand side, the function A that is being

defined does not appear on the right. The other two clauses taken together

make up the recursion step. One covers the case m > 0 while n ¼ 0; the other

deals with the case when both m, n> 0. The distinguishing feature that marks

them as parts of the recursion step is the appearance of A on the right.

The reason why the Ackermann function is famous is its spectacular rate of growth.

For m < 4 it remains leisurely, but when m � 4 it accelerates dramatically, much

more than either the exponential or the factorial function. Even A(4,2) is about

2�1019728. This gives it a theoretical interest: although the function is computable, it

grows faster than any function in the class of so-called ‘primitive recursive’ func-

tions, which for a short time were thought to exhaust the computable functions.

But what interests us about the function here, is the way in which the last

clause of the definition makes the value of A(m,n) depend on the value of the same

function for the first argument diminished by 1, but paired with a value of the

second argument that might be larger than n. As the function picks up speed, to

calculate the value of A(m,n) for a given m may require prior calculation of

A(m{1,n0) for an extremely large n0 > n.

Indeed, given the way in which the recursion condition reaches ‘upwards’ on

the second variable, it is not immediately obvious that the clauses taken together

really succeed in defining a unique function. It can, however, be shown that they

do, by introducing a suitable well-founded ordering on N2, and using the principle

of well-founded recursion. We will introduce those concepts in a later section of

this chapter.

This function also illustrates the differences that can arise between calculating

bottom-up (alias forwards) or top-down (alias backwards, or by unfolding), in the

sense described in the preceding section. The best way to appreciate the difference

is to do the following exercise.
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EXERCISE 4.5.5

Calculate the value of A(2,3) bottom-up. Then calculate it top-down

(unfolding).

This time the bottom-up approach comes off worse. The difficulty is that, as

already remarked, to calculate A(m,n) for a given m may require prior calculation

of A(m{1,n0) for a certain n0 > n. We don’t know in advance how large this n0 will

be, and it is very inefficient to plough through all the values of n0 until we reach the

one needed.

4.6 Structural Recursion and Induction

We now come to the form of recursion and induction that is perhaps the most

frequently used by computer scientists and logicians { structural. It can be

justified or replaced by recursion and induction on the natural numbers, but

may conveniently be used without ever mentioning them. If this sounds like

magic, read on.

We introduce structural recursion/induction in three stages, remembering the

rough dictum that behind every inductive proof lurks a recursive definition. First,

we look at the business of defining sets by structural recursion. That will not be

difficult, because in fact we have already been doing this, without great attention

to the recursive aspect, back in Chapters 2 and 3. Then we will turn to the task of

proving things about these sets by structural induction, which will also be quite

straightforward. Finally, we come to the rather tricky part, examining the task of

taking a recursively defined set and defining a function with it as domain, by

structural recursion. This is where care has to be taken; such definitions are

legitimate only when a special constraint is satisfied.

4.6.1 Defining Sets by Structural Recursion

In Chapters 2 and 3 we introduced the notions of the image and the closure of a set

under a relation or function. We now make intensive use of them. We begin by

recalling their definitions, generalizing a little from binary (i.e. two-place) rela-

tions to relations of any finite number n � 2 of places.

Let A be any set, and let R be any relation (of at least two places) over the local

universe within which we are working. Since m-argument functions are (mþ1)-

place relations, this covers functions of one or more arguments as well.

4.6 Structural Recursion and Induction 103



The image of A under the (mþ1)-place relation R is defined by putting x2R(A)

iff there are a1,. . .,am2A with (a1,. . .am,x)2R. In the case that R is an m-argument

function f, this is equivalent to saying: x 2 f(A) iff there are a1,. . .,am 2 A with

x ¼ f(a1,. . .am).

The concept of image is not yet recursive; that comes with the closure R[A],

which for brevity we write as Aþ. We saw that it can be defined in either of two

ways.

The way of union (bottom up) is by making a cumulative recursion on the

natural numbers, then take the union of all the sets thus produced:

A0 ¼ A

Anþ1 ¼ An [ RðAnÞ; for each natural number n

Aþ ¼ [fAn : n 2 Ng:

The way of intersection (‘top down’) dispenses with numbers altogether. We

say that a set X is closed under R iff R(X) � X. The closure Aþ of A under the

relation R is defined to be the intersection of all sets X � A that are closed under

R. That is, Aþ ¼ \fX : A � X � R(X)g.
So defined, Aþ is in fact the least superset of A that is closed under all the

relation R. On the one hand, being the intersection of all the X, it is clearly

included in each X; on the other hand, it is easy to check that it is itself also

closed under the relation R.

EXERCISE 4.6.1

(a) Verify the last point made, that the intersection of all sets X � A that

are closed under R is itself closed under R.

(b) For this exercise, to avoid confusion, use A[ as temporary notation for

Aþ defined bottom-up, and A\ as temporary notation for Aþ defined

top-down. Show that A[ ¼ A\ by establishing the two inclusions

separately, as follows:

(i) Use cumulative induction on the natural numbers to show that

A[ � A\ .

(ii) Show that A[ is closed under R and use this to get A\ � A[.

The definition can evidently be extended to cover an arbitrary collection of

relations, rather than just one. The closure Aþ of A under a collection fRigi2I of

relations is defined to be the intersection of all sets X�A that are closed under all

the relations in the collection.
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A set is said to be defined by structural recursion whenever it is introduced as

the closure of some set (referred to as the basis, or initial set) under some collection

of relations (often called constructors or generators).

In this context, it is intuitively helpful to think of each (mþ1)-place relation R

as a rule: if (a1,. . .am,x) 2 R then, when building Aþ, we are authorized to pass

from items a1,. . .am already in Aþ, to put x in Aþ too. Thus, Aþmay be described

as the closure of A under a collection of rules. This way of speaking often makes

formulations more vivid.

We illustrate the concept by several examples drawn from computer science

and logic.

l The notion of a string, already mentioned informally in an Alice box of

Chapter 3. It is of central importance for formulating e.g. the theory of finite

state machines. Let A be any alphabet, consisting of elementary signs. Let l be

an abstract object, distinct from all the letters in A, which is understood to

represent the empty string. The set of all strings over A, conventionally written

as A*, is the closure of A[flg under the rule of concatenation, i.e. the opera-

tion of taking two strings s,t and forming their concatenation by writing

s immediately followed by t.

l We can define specific sets of strings by structural recursion. For instance, a

string over an alphabet A is said to be a palindrome iff it reads the same from

each end. Can we give this informal notion a precise recursive definition? Very

easily! The empty string l reads the same way from each end, and is the

shortest even palindrome. Each individual letter in A reads the same way

from left and from right, and so these are the shortest odd palindromes. All

other palindomes may be obtained by successive symmetric flanking. So we

may take the set P of palindromes to be the closure of the set flg[A under the

rule permitting passage from a string s to a string xsx for any x 2 A. In other

words, it is the least set S including flg[A such that xsx 2 S for any s 2 S

and x 2 A.

l Logicians also work with symbols, and constantly define sets by structural

recursion. In particular, the set of formulae of classical propositional logic (or

any other logical system) is defined as the closure of an initial set A under

some operations. In this case, A is a set of proposition letters. It is closed

under the rules for forming compound formulae by means of the logical

connectives allowed, e.g. :,^,_ (with parentheses to ensure unambiguous

reading). So defined, the set of propositional formulae is a particular subset of

the set B* of all strings in the alphabet B ¼ A[f:,^,_g[f(,)g. In case you

have trouble reading it, f(,)g is the set consisting of the left and right

parentheses.
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l The set of theorems in a formal logical system can also be defined by structural

recursion. It is the closure Aþ of some initial set A of formulae (known as the

axioms of the system) under certain functions or relations between formulae

(known as derivation rules of the system).

l Algebraists also use this kind of definition, even though they are not, in general

dealing with strings of symbols. For example, if A is a subset of an algebra, then

the subalgebra generated by A has as its carrier (i.e. underlying set) the closure

Aþ of A under the operations of the algebra.

In all these cases, it is perfectly possible to use natural numbers as indices for

successive sets A0, A1, A2,. . . in the generation of the closure, and replace the

structural definition by one that makes a cumulative recursion on the indices.

Indeed, this is a fairly common style of presentation, and in some contexts has its

advantages. But in general, the use of indices and appeal to induction on numbers

is an unnecessary detour.

Alice Box: Defining the set N recursively

Alice: My friend studying the philosophy of mathematics tells me that even

the set of natural numbers may be defined by structural recursion. This, he

says, is the justification for induction over the integers. Is that possible?

Hatter: We can define the natural numbers in that way, if we are willing to

identify them with sets. There are many ways of doing it. For example, we can

take N to be the least set X that contains Ø and is closed under the operation

taking each set S to S[fSg. In this way arithmetic is reduced to set theory.

Alice: Does that justify induction over the natural numbers?

Hatter: When arithmetic is axiomatized in its own terms, without reducing it to

anything else, induction is simply treated as an axiom. In that context, it is not

justified formally at all. When arithmetic is reduced to set theory, say along the

lines that I just mentioned, induction need no longer be treated as an axiom { it

can be proven. Which the best way of doing things depends on your philosophy

of mathematics. But discussing these matters would take us too far off our track.

EXERCISE 4.6.2 (WITH SOLUTION)

(a) Define by structural recursion the set of even palindromes over an

alphabet A, i.e. the palindromes with an even number of letters.
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(b) Let ’ be any formula of propositional logic. Define recursively the set of

all formulae of which ’ is a subformula. Hint: Assume that the set of all

formulae is itself defined recursively using the connectives :,^,_, and

abbreviate formulae by omitting brackets as convenient.

Solution:

(a) The set of even palindromes over an alphabet A is the closure of flg
under the same rule, i.e. passage from a string s to a string xsx for any

x 2 A.

(b) Consider the rule allowing passage from any propositional formula a to

:a, and the rule allowing passage from a to any one of a^b, b^a, a_b or

b_a for any formula b whatsoever. Then the desired set is the closure

Aþ of A ¼ f’g under these two rules.

4.6.2 Proof by Structural Induction

We have seen that the procedure of defining a set by structural recursion, i.e. as

the closure of a set under given relations or functions, is pervasive in computer

science, logic and abstract algebra. Piggy-backing on this mode of definition is a

mode of demonstration that we will now examine { proof by structural induction.

Let A be a set, of any items whatsoever, let Aþ be the closure of A under a

collection fRigi2I of relations. Consider any property that we would like to show

holds of all elements of Aþ. We say that a relation R preserves the property iff

whenever a1,. . .am have the property and (a1,. . .am,x) 2 R, then x also has it.

When R is a function f, this amounts to requiring that whenever a1,. . .am has the

property then f(a1,. . .am) also has the property.

The principle of proof by structural induction may now be stated as follows.

Again, let A be a set, and Aþ the closure of A under a collection fRigi2I of relations.

To show that every element of Aþ has a certain property, it suffices to show:

Basis : Every element of A has the property:

Induction step : Each relation R 2 fRigi2I preserves the property:

Justification of the principle is almost immediate given the definition of the

closure Aþ. Let X be the set of all items that have the property in question.

Suppose that both basis and induction step hold. Since the basis holds, A � X.

Since the induction step holds, X is closed under the relations Ri. Hence by the

definition of Aþ as the least set with those two features, we have Aþ�X, i.e. every

element of Aþ has the property, as desired.
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For an example of the application of this principle, suppose we want to show

that every even palindrome has the property that every letter that occurs in it

occurs an even number of times. Recall that the set of even palindromes

was defined as the closure of flg under passage from a string s to a string xsx

where x2A. So we need only show two things: that l has the property in question,

and that whenever s has it then xsx does too. The former holds vacuously, since

there are no letters in l (remember, l is not itself a letter). The latter is trivial,

since the passage from s to xsx adds two more occurrences of the letter x without

disturbing the other letters.

EXERCISE 4.6.3

(a) Use proof by structural induction to show that in any (unabbreviated)

formula of propositional logic, the number of left brackets equals the

number of right brackets.

(b) Let A be any set of formulae of propositional logic, and let R be the

three-place relation of detachment (alias modus ponens) defined by

putting (a,b,c) 2 R iff b is the formula a!c. Use structural induction

to show that every formula in Aþ is a subformula of some formula in A.

4.6.3 Defining Functions by Structural Recursion on Their
Domains

There is a difference between the two examples in the last exercise. In the first one,

we begin with a set A of elementary letters, and the closing functions (forming

negations, conjunctions, disjunctions) produce longer and longer formulae, and so

always give us something fresh. But in the second example, the closing relation

may sometimes give us a formula that is already in the initial set A, or already

available at an earlier stage of the closing process: it is not guaranteed always to

give us something fresh.

This difference is of no significance for structural induction as a method of

proof, but it is very important, indeed vital, if we want to use structural recursion

to define a function whose domain is a set already defined by structural recursion { a

situation that arises quite frequently.

Suppose that we want to give a recursive definition of a function f whose

domain is the closure Aþ of a set A under an injective function g. For example,

we might want to define a function f: Aþ!N, as some kind of measure of

complexity of the elements of the domain, by putting f(a) ¼ 0 for all a 2 A,
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and f(g(a)) = f(a)þ1. Since g is injective, the second part of the definition makes

sense, but is the definition as a whole legitimate?

Unfortunately, not always. The elements g(a) introduced by the function g

may not be fresh. It may turn out that g(a) is already in the set A, so that f(g(a))

was already defined as 0 by the first part of the definition, with the result that it is

defined twice in different ways.

To bring this out, we make our example completely concrete. Let N be the

set of natural numbers and g: N!N the function of adding one except that g(99)

is 0. That is, g(n) ¼ nþ1 for n 6¼ 99, while g(99) ¼ 0. Clearly, this function is

injective. Put A ¼ f0g. Then the closure Aþ of A under g is the set f0,. . .,99g.
Now suppose that we wish to define a function f: Aþ!N by structural induction,

putting f(0) ¼ 0 and f(g(n)) ¼ f(n)þ1 for all n 2 Aþ. This definition is fine for

values of n < 99, indeed it is the identity function for those values. But it breaks

down at n ¼ 99. The recursion step tells us that f(g(99)) ¼ f(99)þ1 ¼ 100, but

since g(99) ¼ 0, the basis also forces us to say f(g(99)) ¼ f(0) ¼ 0. Although the

basis and the recursion step make sense separately, they conflict, and we have

not succeeded in defining a function!

Inductive proof and recursive definition, which went hand in hand up to now,

thus come apart a little at this stage:

l Structural recursion, as a method of defining a set as the closure of an initial set

under relations or functions, is always legitimate.

l Structural induction, as a method of proof that all elements of a recursively

defined set have a certain property, is always a legitimate strategy.

l But structural recursion, as a method of defining a function with a recursively

defined set as its domain, can fail to yield a function as desired.

This prompts the question: Is there a condition whose satisfaction guarantees

that the definition succeeds, i.e. that the function is well-defined?

4.6.4 Condition for Defining a Function by Structural
Recursion

Fortunately, analysis of examples like the above suggests a condition whose satisfac-

tion eliminates the danger of failure. Fortunately too, the condition holds in many

situations of concern to the computer scientist and logician. To simplify notation a

little, we will also focus on the case that the closure is generated by functions.

Let A be a set and Aþ its closure under a collection fgigi2I of functions. An

element x of Aþ is said to be uniquely decomposable iff either (1) x 2 A, and is not

in the range of any of the functions gi, or (2) x =2 A, and x ¼ gi(y1,. . .,yk) for a

4.6 Structural Recursion and Induction 109



unique function gi in the collection and a unique tuple y1,. . .,yk 2 Aþ. Roughly

speaking, this guarantees that there is a unique way in which x can have got into

Aþ. Because many instances of structural recursion in computer science or logic

concern sets of expressions, this property is also often called unique readability.

Unique decomposability suffices to guarantee that a structural recursion on Aþ

succeeds, i.e. that it defines a unique function with Aþ as domain. To be precise:

Principle of structural recursive definition: let A be a set, fgigi2I a collection of

functions, and Aþ the closure of A under the functions. Suppose that every

element of Aþ is uniquely decomposable. Let X be any set, and let f: A!X be a

given function on A into X. Then, for every collection fhigi2I of functions hi on

appropriate powers of X into X, there is a unique function fþ: Aþ!X satisfying

the following recursively formulated conditions:

Another way of putting this principle, which will ring bells for readers who

have done some abstract algebra, is as follows: We may legitimately extend a

function f: A!X homomorphically to a function fþ: Aþ!X if every element of Aþ

is uniquely decomposable.

This is highly abstract, and may at first be rather difficult to follow. It may help

to visualize it through the following diagram for the case that A is a singleton fag,
Aþ is its closure under just one function g with just one argument, so that there is

also just one function h under consideration likewise with just one argument.

Case Definition

Basis: x 2 A fþ(x) ¼ f(x)
Recursion step: x ¼ gi(y1,. . .,yk) is the unique

decomposition of x
fþ(x) ¼ hi(fþ(y1),. . ., fþ(yk))

. .
 . 

.

. .
 . 

.

. .
 . 

. .
 . 

. .
 .A+

f +

hg

a

f

Figure 4.1 Recursive structural definition.

110 4. Recycling Outputs as Inputs: Induction and Recursion



The good news is that when we look at specific applications of this principle,

they are usually very natural { so much so that we sometimes use them without

realizing it, taking the existence of unique extensions for granted.

For a very simple example from computer science, suppose we are given

an alphabet A, and let Aþ be the set of all (finite) lists that can be formed from

this alphabet by the operation cons, of prefixing a letter of the alphabet to an

arbitrary list (see the Alice box ‘n-tuples, sequences, strings and lists’ in

Section 3.5). We might define the length of a list recursively as follows, where

<> is the empty list:

Basis : lengthð54Þ ¼ 0

Induction step : If lengthðlÞ ¼ n and a 2 A; then lengthðalÞ ¼ nþ 1:

The principle tells us that this definition is legitimate, because each non-empty

list has a unique decomposition into a head and a body.

Essentially the same idea is involved when we define the logical depth of a

formula of propositional logic. Suppose our formulae are built up using just

negation, conjunction and disjunction. Intuitively, we say:

Basis : depthðpÞ ¼ 0 for any elementary letter p

Induction step :

Case 1: If depthðaÞ ¼ m then depthð:aÞ ¼ mþ 1

Case 2: If depthðaÞ ¼ m and depthðbÞ ¼ n then depthða ^ bÞ

¼ depthða _ bÞ ¼ maxðm;nÞ þ 1

and take it for granted that the function is well defined. The principle of structural

recursive definition tells us that indeed it is so, because the formulae of proposi-

tional logic have unique decompositions under the operations of forming nega-

tions, conjunctions, and disjunctions (with suitable bracketing).

EXERCISE 4.6.4

(a) Let A be any alphabet, and A* the set of all strings over A. Let a 2 A

and s 2 A*. Intuitively, the substitution function �a,s substitutes the

string s for the letter a in all strings. Define this function by structural

recursion. Hint: In the basis you will need to distinguish cases.

(b) In propositional logic, two formulae a, b are said to be tautologically

equivalent, and we write a¼jj¼ b, iff they receive the same truth-value

4.6 Structural Recursion and Induction 111



as each other, under every possible assignment of truth-values to

elementary letters. Three well-known tautological equivalences are

double negation a ¼jj¼ ::a and the de Morgan principles :(a^b)

¼jj¼ :a_:b and :(a_b) ¼jj¼ :a^:b. With these in mind, define by

structural recursion a function that takes every propositional formula

(built using the connectives:,_,^) to a tautologically equivalent one in

which negation is applied only to elementary letters. Hint : The recur-

sion step will need to distinguish cases.

4.6.5 When the Unique Decomposition Condition Fails?

Can anything be done when the unique decomposition condition fails? Can we

still define functions on the closure of A? Without unique decomposition, we can

no longer do so in the way described in the principle of structural recursion. But

we can still define a function to measure the depth of an element of Aþ.

Recall from Section 3.2 that the closure of A under given relations may also be

defined as the union [fAn : n 2Ng of a sequence of sets. Hence for each element a

of the closure there is an n 2N with a 2An. For a given a of the closure there may

be many such n, but since the set of all natural numbers is well-ordered, we know

that there must be a least such n. We can therefore always define a function depth:

Aþ!N by putting depth(a) to be the least n with a 2 An. This definition will

succeed, even when the operations constructing Aþ out of A do not satisfy the

unique decomposition condition.

4.7 Recursion and Induction on Well-Founded
Sets

The concept of a well-founded set provides the most general context for recursion

and induction. It permits us to apply these procedures to any domain whatsoever {

provided we have available a well-founded relation over the domain. Every other

form can in principle be derived from it. In this section we give a glimpse of the

bare essentials that need to be understood in order to be able to use it.

4.7.1 Well-Founded Sets

We begin by defining the notion of a well-founded relation over a set. Let W

be any set, and < any irreflexive, transitive relation over W. Then we say that
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W is well-founded by < iff every non-empty subset A � W has at least one

minimal element. This definition is rather compact, and needs to be unfolded

carefully.

l A minimal element of a set A�W (under<) is any a2A such that there is no b

2 A with b < a.

l The definition requires that every non-empty subset A � W has a minimal

element. The word ‘every’ is vital. It is not enough to find some subset A of W

with a minimal element, nor to show that W itself has a minimal element. Thus

the requirement is very demanding.

The definition of well-founding can be put in another, equivalent way. Let W

be any set, and < any irreflexive, transitive relation over W. Then W is well-

founded by < iff there is no infinite descending chain . . .a3 < a2 < a1 of elements

of W.

To help appreciate the concept, we give some examples of well-founded sets.

l Clearly, the set N of all natural numbers is well-founded under the usual

ordering, since every non-empty set of natural numbers has a minimal element

(in fact a unique least element). This contrasts with the set Z of all integers,

which is not well-founded under the customary ordering since it has a subset

(e.g. the negative integers, or indeed the whole of Z) that does not have a

minimal element.

l A well-founded set can be ‘longer’ than N. For example, if we take the natural

numbers in their standard order, followed by the negative integers in the

converse of their usual order, giving us the set f0, 1, 2, . . .; {1, {2, {3, . . .g,
then this is well-founded in the order of listing. Clearly this can be repeated as

many times as we like.

EXERCISE 4.7.1

Give an example of the same phenomenon but using the set N itself,

suitably reordered.

l A well-founded set can also be ‘wider’ than N. It need not be a linear

(alias total) order: we may have elements a, b with neither a ¼ b nor a <

b nor b < a. For example, the collection of all finite subsets of an

arbitrarily chosen set is well-founded under the relation of inclusion,

even though when the chosen set has more than one element the collec-

tion will have two distinct subsets (e.g. two singletons) neither of which

is properly included in the other.
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EXERCISE 4.7.2

(a) Explain why, as claimed, the collection of all finite subsets of N is well-

founded.

(b) Show that the collection of all subsets (finite or infinite) of N is not

well-founded. Hint: Use the definition in terms of infinite descending

chains.

l In the special case that a set is well-founded by a total relation, i.e. for all a,b in the

set, either a ¼ b or a < b or b < a, we say that it is well-ordered. Thus, a set W is

well-ordered by a relation < iff < is a linear order of W satisfying the condition

that every non-empty subset of W has a minimal element.

EXERCISE 4.7.3

(a) Show that if W is well-ordered then every non-empty subset A�W has

a unique minimal element, which is moreover the least element of the

subset, in the sense that it is less than every other element of the subset.

(b) Show how, from any well-ordered set we may form one that is not well-

ordered, but is still well-founded, by adding a single element.

4.7.2 The Principle of Proof by Well-Founded Induction

Roughly speaking, a well-founded relation provides a ladder up which we can

climb in a set. This intuition is expressed rigorously by the principle of induction

over well-founded sets, which may be formulated as follows. Let W be any well-

founded set, and consider any property. To show that every element of W has the

property, it suffices to show:

Induction step : the property holds of an arbitrary element a 2 W

whenever it holds of all b 2 W with b5a:

Note that the principle has no basis. In this it is like cumulative induction on

the positive integers. Indeed, it may be seen as a direct abstraction of cumulative

induction, from the specific order that we are familiar with there to any well-

founded relation whatsoever. Of course, we could write in the basis, which would

be: Every minimal element of W itself has the property in question. But it would

be redundant, and in this context is customarily omitted.
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EXERCISE 4.7.4 (WITH SOLUTION)

(a) Formulate the principle in contrapositive form.

(b) Formulate the principle as a statement about subsets of W rather than

about properties of elements of A.

(c) Formulate the principle in contrapositive form as a statement about

subsets of W.

Solution:

(a) Let W be any well-founded set, and consider any property. If the

property does not hold of all elements of W, then there is an a 2 W

that lacks the property although every b 2 W with b < a has the

property.

(b) Let W be any well-founded set, and let P�W. If a 2 P whenever b 2 P

for every b 2W with b < a, then P ¼W.

(c) Let W be any well-founded set, and let P�A. If P 6¼W then there is an

a 2W with a =2 P although b 2 P for every b 2W with b < a.

The proof of the principle of induction over well-founded sets is remark-

ably brief, considering its power. We use proof by contradiction. Let W be

any well-founded set, and consider any property. Suppose that (1) the

property holds of an arbitrary element a 2W whenever it holds of all b 2W

with b < a, but (2) it does not hold of all elements of W. We get a

contradiction.

Let A be the set consisting of those elements of W that do not have the

property in question. By the second supposition, A is not empty so, since W

is well-founded, A has a minimal element a. Thus on the one hand, a does

not have the property. But on the other hand, since a is a minimal element

of A, every b 2W with b < a is outside A, and so does have the property in

question, contradicting supposition (1), and we are done.

Alice Box: proving the principle of induction over well-founded sets

Alice: That’s certainly brief for such a general principle { although I would

not say it is easy. But there is something about it that bothers me. We showed

that the principle holds for any set that is well-founded under a relation <.

Hatter: Yes, indeed.

(Continued)
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Alice Box: (Continued)

Alice: In the definition of a well-founded set, we required that the relation <

be irreflexive and transitive, as well as satisfying the ‘minimal element’

condition that every non-empty subset has at least one minimal element. I

see how we used the minimal element condition in the proof, but I don’t see

that we used irreflexity or transitivity. Does this mean that we can generalize

the principle by dropping those two requirements?

Hatter: Very perceptive! The short answer is ‘yes’. A longer answer adds that

the further generality is partly apparent, because the minimal element con-

dition itself implies irreflexivity.

Alice: And transitivity?

Hatter: No, it does not imply transitivity { although it does imply acyclicity,

defined in the exercises at the end of Chapter 2. So you can indeed get a bit

more generality into the principle by dropping the transitivity assumption.

But the present formulation covers most applications.

EXERCISE 4.7.5

Verify the claims made by the Hatter: that the minimal element condition

implies both irreflexivity and acyclicity.

4.7.3 Definition of a Function by Well-Founded Recursion on
its Domain

Induction for well-founded sets is a principle of proof. Is there a corresponding

principle for definition, i.e. guaranteeing the existence of functions that are

defined by recursion on a well-founded domain? The answer is positive. However

stating the principle in its full generality in a fully formal manner is quite subtle,

and we will not attempt it here. We will give a rather informal formulation that

covers most of the cases that a computer scientist is likely to need.

Principle of recursive definition on well-founded sets: Let W be any set that is

well-founded under a relation<. Then we may safely define a function f: W!X by

giving a rule that specifies, for every a 2W, the value of f(a) in terms of the values

of f(b) for a collection of b < a, using any other functions and sets already well

defined. ‘Safely’ here means that there exists a unique function satisfying the

definition.
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For confident and adventurous readers who have managed to follow so far, we

illustrate the principle by using it to show that the Ackermann function is well-

defined. Those not so confident may skip it, passing directly to the next section.

We recall the recursive definition of the Ackerman function.

Að0; nÞ ¼ nþ 1

Aðm; 0Þ ¼ Aðm� 1; 1Þ for m40

Aðm;nÞ ¼ Aðm� 1; Aðm;n� 1ÞÞ for m;n40

This function has two arguments, both from N, so we turn it into a one-

argument function on N2 ¼ N	N by reading the round brackets in the defini-

tion as indicating ordered pairs (strictly speaking, we should then add extra round

brackets for redundant punctuation, but we keep it reader-friendly). Given the

familiar relation< over N, which we know to be well-founded, indeed to be a well

ordering of N, we define the lexicographic order over N2 by the rule: (m,n) <

(m0,n0) iff either m < m0, or m ¼ m0 and n < n0.

This is a very useful way of ordering the Cartesian product of any two well-

founded sets, and deserves to be remembered in its own right. The reason for the

name ‘lexicographic’ will be clear if you think of the case where instead of N, we

are considering its initial segment A¼ fn: 0� n� 25g and identify these with the

letters of the English alphabet. The lexicographic order of A2 then corresponds to

its dictionary order.

We now check that the lexicographic relation < is irreflexive, transitive, and

that it well-founds N2 (in fact, it is also linear and so well-ordered). Having done

this, we are ready to apply the principle of recursive definition on well-founded

sets. All we have to do is show that the two recursion clauses of the candidate

definition specify, for every (m,n) 2N2, the value of A(m,n) in terms of the values

of A(p,q) for a collection of pairs (p,q)< (m,n), using any other functions and sets

already known to exist.

This amounts to showing, for the first clause of the recursion step, that

(m{1,1) < (m,0) and, for the second clause of the recursion step, that (m{1,

A(m, n{1)) < (m,n), for all m,n > 0. But both of these are immediate from the

definition of the lexicographic order <. We have (m{1,1) < (m,0) because m{1 <

m, regardless of the fact that 1 > 0. Likewise, we have (m{1, A(m, n{1)) < (m,n)

no matter how large A(m, n{1) is, again simply because m{1 < m.

EXERCISE 4.7.6

Check the claim made, that the lexicographic order of N2 is irreflexive, tran-

sitive, and that it is well-founds N2, indeed, is also linear and so well-ordered.
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4.8 Recursive Programs

What is the link between all this and recursive programs in computer

science? Does the mathematical work on recursive definitions and inductive

proofs do anything to help us understand how programs work and what

they can do?

The link lies in the fact that a program can be seen as a finite battery of

instructions to perform computations for a potentially infinite range of inputs.

Simplifying a great deal, and restricting ourselves to the principle case of deter-

ministic programs (those in which the instructions suffice to fully determine each

step in terms of its predecessors) the program may be understood as a recipe for

defining a function that takes an input a to a finite or infinite succession a0, a1,. . .

of computed items. If the sequence is finite, the last item may be regarded as the

output.

Equivalently, we are looking at a recipe for defining a two-place function

taking each pair (a,n), where a is a possible input and n is a natural number, to

an item an. The recipe is recursive in the sense that the value of an may depend

upon the values of any of the earlier am, in whatever way that the program

specifies, so long as each step to an from the earlier steps may actually be

performed by the computer that is executing the program. Typically, the ‘while’

and ‘until’ clauses setting up loops in the program, correspond to recursion clauses

in the definition of the associated function.

The question thus arises: When does the proposed recipe really give us a

program, i.e. when does it really define a function? If we are writing the program

in a well-constructed programming language, then the tight constraints that have

been imposed on the grammar of the language may suffice to guarantee that it is

well-defined. But if we are working in a lax or rather informal language, the

question of whether we have specified a unique function needs to be analysed

using the concept of recursive definition.

When the recipe does give us a unique function, other questions remain. Is

the program guaranteed to terminate, i.e. is the sequence of steps an finite? If it

does terminate, does the output give us what we would like it to give? Answers

to these questions require proof, and the proof will always involve inductive

arguments of one kind or other, perhaps of many kinds. In some simple cases it

can be sufficient to induce on the number of loops in the program. For more

complex programs, the inductive arguments can be less straightforward. In

general, one needs to devise a suitable relation over a suitable set of items,

verify that it is well founded, and then use well-founded induction over the

relation.
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FURTHER EXERCISES

4.1. Proof by simple induction

(a) Use simple induction to show that for every positive integer n, 5n{1 is

divisible by 4.

(b) Use simple induction to show that for every positive integer n, n3{n is

divisible by 3. Hint: In the induction step, you will need to make use of

the arithmetic fact that (k þ 1)3 = k3 þ 3k2 þ 3k þ 1.

4.2. Definition by simple recursion

(a) Let f: N!N be the function defined by putting f(0) = 0 and f(nþ1) = n

for all n 2 N. (i) Evaluate this function bottom-up for all arguments

0{5. (ii) Explain what f does by expressing it in explicit terms (i.e.

without a recursion). Hint: Your explanation will make use of

subtraction.

(b) Let g: N	N!N be defined by putting g(m,0) = m for all m 2 N and

g(m,nþ1) = f(g(m,n)) where f is the function defined in the first part of

this exercise. (i) Evaluate f(3,4) top-down. (ii) Explain what f does by

expressing it in explicit terms (i.e. without a recursion). Hint: Your

explanation will again make use of subtraction.

(c) Let f: Nþ!N be the function that takes each positive integer n to the

greatest natural number p with 2p� n. Define this function by a simple

recursion. Hint: You will need to divide the induction step into two

cases.

4.3. Proof by cumulative induction

(a) Use cumulative induction to show that any postage cost of four or more

pence can be covered by two-pence and five-pence stamps.

(b) Use cumulative induction to show that for every natural number n,

F(n) � 2n{1, where F is the Fibonacci function.

(c) Calculate F(5) top-down, and then again bottom up, where F is the

Fibonacci function.

(d) Express each of the numbers 14, 15, and 16 as a sum of 3s and/or 8s.

Using this fact in your basis, show by cumulative induction that every

positive integer n � 14 may be expressed as a sum of 3s and/or 8s.

(e) Show by induction that for every natural number n, A(1,n) ¼ n þ 2,

where A is the Ackermann function.
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4.4. Definition of sets by structural recursion

(a) Define by structural recursion the set of all odd palindromes over a

given alphabet.

(b) Define by structural recursion the set of all palindromes (over a given

alphabet) that contain no two contiguous occurrences of the same

letter. Hint: Make use of the fact that you will verify in the first part

of the next exercise.

4.5. Proof by structural induction

(a) Show by structural induction that every even palindrome is either

empty or contains two contiguous occurrences of the same letter.

(b) Show by structural induction that in classical propositional logic, no

formula built using propositional letters and connectives from among

_, ^,!,$ is a contradiction. Hint: Think of a suitable assignment of

truth-values, and show by structural induction that it makes every

such formula true.

(c) Justify the principle of structural induction by using cumulative

induction over the natural numbers. Hint: To keep the exposition

simple, consider the closure Aþ of A under a single relation

R, and use the alternative definition of Aþ as the union of sets A0,

A1,. . .

4.6. Definition of functions by structural recursion on their domains

(a) Consider any alphabet A and the set A* of all strings made up from A.

Intuitively, the reversal of a string s is the string obtained by reading all

its letters from right to left instead of left to right. Provide a structural

recursive definition for this operation on strings. Hint: The base should

concern the empty string, called l, and the induction step should use

the operation cons.

(b) In presentations of propositional logic, it is customary to define an

assignment of truth values to be any function v: A!f1,0g, where A is

some stock of elementary letters p, q, r,. . . assumed to be given. Any

such assignment is then extended to a valuation vþ: Aþ!f1,0g where

Aþ is the set of all formulae, i.e. the closure of A under the operations

of forming, say, negations, conjunctions and disjunctions, in a way

that respects the usual truth-tables. It is tacitly assumed that this

extension is unique. Analyse what is being done in terms of structural

recursion.
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4.7. Recursion and induction on well-founded sets

(a) Prove the equivalence of the two definitions of a well-founded set.

(b) Show that every subset of a well-founded set is well-founded under the

same relation.

(c) Is the converse of a well-founding relation always a well-founding

relation? Give proof or counter-example.

Selected Reading

Induction and recursion on the positive integers. There are plenty of texts, though

most tend to neglect the recursion side in favour of induction. Here are two among

others:

Carol Schumacher Chapter Zero: Fundamental Notions of Abstract Mathe-

matics. Pearson, 2001 (second edition), Chapter 3.

James L. Hein Discrete Structures, Logic and Computability. Jones and

Bartlett, 2005 (second edition), Chapter 4.4.

Well-founded induction and recursion. Introductory accounts tend to be written

for students of mathematics rather than computer science, and again tend to

neglect recursive definition. Two texts accessible to computer science students:

Seymour Lipschutz Set Theory and Related Topics. McGraw Hill Schaum’s

Outline Series, 1998, Chapters 8{9.

Paul R. Halmos Naive Set Theory. Springer, 2001 (new edition), Chapters

17{19.

Structural induction and recursion. It is rather difficult to find introductory

presentations. One of the purposes of the present chapter has been to fill the gap.
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5
Counting Things: Combinatorics

Chapter Outline

Up to now, our work has been almost entirely qualitative. The concepts of a set,

relation, function, recursion and induction are non-numerical, although they

have important numerical manifestations as, say, sets of integers or recursive

definitions on the natural numbers. In this chapter we turn to quantitative

matters, and specifically to problems of counting. We will tackle two kinds of

question.

First: Are there rules for determining the number of elements of a large set

from the number of elements of smaller ones? Here we will learn how to use two

very simple rules: addition (for unions of disjoint sets) and multiplication (for

Cartesian products of arbitrary sets).

Second: Are there rules for calculating the number of possible selections of

k items out of a set with n elements? Here we will see that the question is less

straightforward, as there are several different kinds of selection, giving us very

different outcomes. We will untangle four basic modes of selection, give

arithmetical formulae for them, and practice their application. In the final

section we will turn to the problems of counting rearrangements and parti-

tions of a set.

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 5, � Springer-Verlag London Limited 2008
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5.1 Two Basic Principles: Addition
and Multiplication

In earlier chapters, we already saw some principles for calculating the number of

elements of one set, given the number in another. In particular, in Chapter 3 we

noted the equinumerosity principle: two finite sets have the same number of

elements iff there is a bijection from one to the other. In the exercises at the end

of Chapter 1, we noted an important equality for difference, and another one for

disjoint union. They provide our starting point in this chapter, and we begin by

recalling them. For difference we observed:

Subtraction principle for difference : LetA;B be finite sets.

Then #ðAnBÞ ¼ #ðAÞ � #ðA \BÞ:

For union we saw:

Addition principle for two disjoint sets : Let A;B be disjoint finite sets.

Then #ðA [BÞ ¼ #ðAÞ þ #ðBÞ:

The condition of disjointedness is essential here. For example, if A¼ f1,2g and

B ¼ f2,3g then A[B ¼ f1,2,3g with only three elements, not four.

Clearly the addition principle can be generalized to n sets, provided they

are pairwise disjoint in the sense of Chapter 1, i.e. for any i,j � n, if i 6¼ j then

Ai\Aj ¼ ˘.

Addition principle for many pairwise disjoint sets : Let A1; . . . ; An be

pairwise disjoint finite sets Then #ð[fAigi�nÞ ¼ #ðA1Þ þ . . .þ #ðAnÞ:

EXERCISE 5.1.1 (WITH SOLUTION)

Let A, B be finite sets. Formulate and verify a necessary and sufficient

condition for #(A[B) ¼ #(A).

Solution: #(A[B)¼#(A) iff B�A. Verification: If B� A then A[B¼A

so #(A[B)¼#(A). Conversely, if the inclusion does not hold then there is

a b 2 BnA so #(A) < #(A)þ1 ¼ #(A[fbg) � #(A[B).

Can we say anything for union when the sets A, B are not disjoint? Yes, by

breaking them down into disjoint components. For example, we know that
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A[B ¼ (A\B)[(AnB) [(BnA) and these are disjoint, so #(A[B) ¼
#(A\B) þ #(AnB) þ #(BnA). Hence by the subtraction principle for

difference;

#ðA [BÞ ¼ #ðA \ BÞ þ #ðAÞ � #ðA \BÞ þ #ðBÞ � #ðA \BÞ

¼ #ðA \ BÞ � #ðA \ BÞ � #ðA \ BÞ þ #ðAÞ þ #ðBÞ

¼ #ðAÞ þ #ðBÞ � #ðA \BÞ:

We have thus shown the:

Addition Principle for Two Arbitrary Sets : Let A;B be any finite sets:

Then #ðA [ BÞ ¼ #ðAÞ þ #ðBÞ � #ðA \ BÞ:

EXERCISE 5.1.2

(a) Illustrate the addition principle for two disjoint sets using a Venn

diagram.

(b) Do the same for the non-disjoint version.

(c) Check the claim that A[B ¼ (A\B)[(AnB)[(BnA).

(d) Show that AnB ¼ AnA\B.

Alice Box: Addition principle for n arbitrary sets

Alice: We generalized the principle for two disjoint sets to n disjoint sets.

Can we make a similar generalization from two arbitrary sets to n

arbitrary sets?

Hatter: Indeed we can, but its formulation is rather more complex. To state it

properly we need the notion of an arbitrary combination of n things k at a

time, which we will get to later in the chapter. So let’s take a rain-check on

that one.

EXERCISE 5.1.3 (WITH SOLUTION)

(a) The classroom contains seventeen male students, eighteen female stu-

dents, and the professor. How many altogether in the classroom?
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(b) The logic class has twenty students who also take calculus, nine who

also take a philosophy unit, eleven who take neither, and two who

take both calculus and a philosophy unit. How many students in the

class?

Solution:

(a) 17þ18þ1 ¼ 36, using the addition principle for n ¼ 3 disjoint sets.

(b) ((20þ9){2)þ11¼ 38, using the addition principle for two arbitrary sets

to calculate the number taking either calculus or philosophy (in the

outer parentheses), and then applying the addition principle for two

disjoint sets to cover those who take neither.

Applications of the addition principles taken alone are evidently quite trivial.

Their power comes from their joint use with other rules, notably the multiplica-

tion principle, which we now explain:

Multiplication rule for two sets : Let A;B be finite sets. Then

#ðA� BÞ ¼ #ðAÞ �#ðBÞ:

In words: the number of elements in the Cartesian product of two sets is equal

to the product of the numbers in each. Reason: If A has m elements and B has n

elements, then for each of the m elements of the set A serving as a first term in an

ordered pair (a,b) 2A�B, there are n elements of B that can serve as second term

b: the selection we make from A does not limit or influence the range of subsequent

selection in B. The same reasoning gives us more generally:

Multiplication rule for many sets: Let A1; . . . ; An be finite sets. Then

#ðA1 � . . .� AnÞ ¼ #ðAÞ � . . . �#ðBÞ:

EXERCISE 5.1.4 (WITH SOLUTION)

The menu at our restaurant allows choice: for first course one can choose

either soup or a salad, the second course can be either beef, duck or

vegetarian, followed by a choice of fruit or cheese, ending with black tea,

green tea or coffee. How many selections are possible?

Solution: 2 �3�2�3 ¼ 36. The selections are independent of each other, and

so are in one-one correspondence with the Cartesian product of four sets

with 2,3,2,3 elements respectively.

126 5. Counting Things: Combinatorics



Alice Box: The maverick diner

Alice: Not if I am there!

Hatter: What do you mean?

Alice: Well, I never drink anything with caffeine in it, so I would skip the

last choice. And following an old European custom, I prefer to take my fruit

before anything else, so I would not follow the standard order. So my

selection would not be any of your 36. It would be, say, (fruit, salad, duck,

nothing).

Hatter: You have put your finger on an important issue. When a ‘real-life’

counting problem is given, its presentation is frequently underdetermined.

In other words, certain aspects are left implicit, and they can often be filled

in different ways. For example, in the restaurant problem it was tacitly

assumed that everyone chooses exactly one dish from each category, and

that the order of the categories is fixed: any other reordering is either

disallowed or regarded as equivalent to the listed order. If we do not make

these assumptions, we can get quite different numbers of selections.

Alice: That seems to make the mathematics difficult.

Hatter: Not so much the mathematics, but its application. In general, the

trickiest part of a real-life counting problem is not to be found in the calcula-

tions to be made when applying a standard mathematical formula. It lies in

working out which (if any) of the mathematical formulae in your tool-kit is

the appropriate one. And that depends on understanding what the problem is

about and locating its possible nuances. We need to know what items are

being selected, from what categories, in what manner. Especially, we need to

know when two items, or two categories, or two selections are to be regarded

as identical { to be counted as one, not as two. Only then can we safely give

the problem an abstract representation that justifies the application of one of

the formulae in the tool kit. We will see more examples of this as we go on.

EXERCISE 5.1.5

(a) Telephone numbers in the London area begin with 020 and continue

with eight more digits. How many are there?

(b) How many distinct licence plates are there consisting of two letters

other than O, I and S (to prevent possible visual confusion with similar-

looking digits), followed by four digits?
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5.2 Using the Two Basic Principles Together

Often the solution of a problem requires the use of both the addition and multi-

plication principles. Here is a simple example. How many four-digit numbers

begin with 5 or with 73?

We begin by breaking our set (of all four-digit numbers beginning with 5 or

with 73) into two disjoint subsets { those beginning with 5, and those beginning

with 73. We determine their numbers separately, and then by the addition prin-

ciple for disjoint sets we add them. In the first case, with the digit 5, there are three

digits still to be filled in, with 10 choices for each, so we get 103¼ 1000 possibilities.

In the second case, beginning with 73, we have two digits to fill in, hence 102¼ 100

possibilities. So the total is 1100 four-digit numbers beginning with 5 or with 73.

This kind of procedure is quite common, and we look at its general form. We

are required to determine #(A) { the number of elements of a set A. We observe

that A ¼ A1[...[An where the sets Ai are pairwise disjoint. We then note that

each of the sets Ai is (or may be put in one-one correspondence with) a Cartesian

product Ai1�. . .�Aik (where k may depend on i). So we apply n times the multi-

plication rule for many sets to get the value of each #(Ai), and then apply once the

addition rule for many disjoint sets to get the value of #(A) itself.

EXERCISE 5.2.1 (WITH PARTIAL SOLUTION)

(a) You have six shirts, five ties, and four pairs of jeans. You must wear a shirt

and a pair of trousers, but maybe not a tie. How many outfits are possible?

(b) A tag consists of a sequence of four alphanumeric signs (letters or

digits). How many tags with alternating letters and digits begin with

either the digit 9 or the letter m? Warning: Pay attention to the

requirement of alternation.

Solution to (a): The set of possible outfits is the union of two sets: SxJ and

SxJxT. Notice that these two sets are disjoint (why?). There are 6�4 = 24

elements of SxJ, and 6 �4 �5 = 120 elements of SxJxT. So there are

144 attires in which to sally forth.

5.3 Four Ways of Selecting k Items out of n

A club has 20 members, and volunteers are needed to set up a weekly roster of

members to clean up the coffee room, one for each of the six days of the week that

the club is open. How many possible ways of doing this?
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This question has no answer! Or rather, it has several different answers,

according to how we interpret it. The general form is: how many ways of selecting

k items (here 6 volunteers) out of a set with n elements (here, the pool of 20 mem-

bers). Without looking for more far-fetched readings, there are two basic dimen-

sions on which more precision is needed.

l Does the order in which the selection is made matter for counting purposes?

For example, is the roster with me serving on Monday and you on Tuesday

regarded as different from the one that is the same for all other days but with

our time-slots swapped? Do we count them as two rosters or as one?

l Is repetition allowed? For example, are you allowed to volunteer for more than

one day, say both Monday and Friday?

These two options evidently give rise to four cases, which we will need to

distinguish carefully in our analysis.

Order matters, repetition allowed O+R+

Order matters, repetition not allowed O+R{

Order doesn’t matter, repetition allowed O{R+

Order doesn’t matter, repetition not allowed O{R{

To illustrate the difference graphically in the two dimensions that a page has

to offer, suppose that we need only 2 volunteers out of, say, 5 members.

Table 5.1 Modes of selecting 2 items out of 5.

a b c d e

a

b

c

d

e

The members are called a,b,c,d,e. If we select volunteers (b,d) say, then this is

represented by the cell for row b and column d. The table contains 25 cells altogether.

l OþRþ: If order matters and repetition is allowed, then each cell represents a

possible selection of two volunteers out of five. There are thus 25 possible selections.

l OþR{: If order matters but repetition is not allowed, then the diagonal cells do

not represent allowed selections. There are thus 25{5 ¼ 20 possible selections.

l O{Rþ: If order does not matter but repetition is allowed, then the cells to the

upper right of the diagonal give the same outcome as their images in the
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bottom left. For example, (b,d) represents the same selection as (d,b). In this

case we have only 25{10 ¼ 15 possible selections, subtracting the ones to the

bottom left of the diagonal to avoid counting them twice.

l O{R{: If order does not matter and repetition is not allowed, we have even

less. We must subtract the cells of the diagonal from the previous count,

leaving only those to the upper right. Thus we get only 15{5 ¼ 10 selections.

Thus, according to the way in which we understand the selection we get 25, 20,

15, or 10 possible selections! We must consider the four modes of selection one

by one.

EXERCISE 5.3.1

(a) Identify the cells corresponding to OþR{, O{Rþ, O{R{ by suitable

hatching (vertical, horizontal, diagonal respectively).

(b) Construct a similar table for the four different modes of choosing 2

elements out of 6, hatching the respective areas in the same way, and

giving the number of selections under each mode.

It will be helpful to note the following connections with what we have learned

about functions in Chapter 3.

OþRþ: When order matters and repetition is allowed, then each selection of k

items from an n-element set may be represented by an ordered k-tuple

(a1,. . .,ak) of elements of the set. As we already know, such an ordered k-tuple

may be understood as a function on the set f1,. . .,kg into the set f1,. . .,ng. Thus

the number of selections of k items from an n-element set, understood in this

mode, is the same as the number of functions from a k-element set e.g. f1,. . .,kg
into an n-element set e.g. f1,. . .,ng.

OþR{: When order matters but repetition is not allowed, then the number of

selections of k items from an n-element set is the same as the number of injective

functions from a k-element set e.g. f1,. . .,kg into an n-element set e.g. f1,. . .,ng.
Injective, because when i 6¼ j, f (i) is not allowed to be the same as f (j).

O{R{: When order does not matter and repetition is not allowed, then the

number of selections of k items from an n element set is the same as

the number of ranges of injective functions from a k-element set into an

n-element set. If you think about it, this is the number of k-element subsets of

the n-element set. Reason: every such range is a k-element subset of the target

set, and every k-element subset of the target set is the range of some such
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function; the two collections are thus identical and so have the same number

of elements.

Alice Box: The mode O{Rþ, sets and multisets

Alice: You forgot the other mode O{Rþ of selection { where order doesn’t

matter but repetition is allowed. What does it amount to in terms of functions?l

Hatter: Actually, I did not forget. I deliberately omitted it.

Alice: Why?

Hatter: It is not so simple, and may confuse you.

Alice: Tell me anyway.

Hatter: One way of describing it is as the number of functions f from a set

fa1,. . .,ang with n elements into f0,...,kg such that f(a1)þ...þf(an) ¼ k.

Alice: I don’t get it.

Hatter: The function tells us how many times each element ai appears in the

selection (zero or more), and the sum of these appearances must come to k.

Alice: So we are counting functions again?

Hatter: Yes, but be careful with the domain of these functions, which this time

has n elements, and the target set, which has kþ1 elements. There is also

another way of understanding such selections, in a language we have not seen

before. We can see them as the k-element multisets that can be formed from a

set of n elements.

Alice: What is a multiset?

Hatter: Roughly speaking, it is like a set, but allows repetitions. Thus when a

and b are distinct items, the set fa,a,b,bg has only two elements and is identical

to the set fa,bg, whereas the multiset consisting of a, a, b, b has four members,

and is distinct from the multiset consisting of just a, b. Sometimes also called

bags, multisets have recently gained some popularity in certain areas of logic

and computer science. But in my view, in an introductory account like this it is

better to stay with the language of sets.

Alice: OK, let’s forget multisets, and think in terms of sets and functions. How

do you write the selections made under the mode O{Rþ? I mean, under the

two modes OþR� where order is significant we get ordered k-tuples and we

write them as (a1,. . .,ak); under the mode O{R{ we get subsets, so we write

them as fa1,. . .,akg; but what about selections made under the mode O{Rþ?

(Continued)
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Alice Box: (Continued)

Hatter: Good question! Of course, if you are thinking of them as multisets, it

is natural to write them with some other kind of bracket, say square ones. But

from our perspective, thinking of them as functions, it is better to write them as

sets of ordered pairs. So if we make k-selections from a set fa1,. . .,ang in this

mode, each such selection will be written as an n-element set f(a1,i1),. . .,(an,in)g
of ordered pairs, where each 0 � ij � k and i1þ. . .þin ¼ k.

EXERCISE 5.3.2 (WITH SOLUTION)

When k > n, which of the four modes of selection become impossible?

Solution: The two modes that disallow repetition (OþR{ and O{R{) pre-

vent any possible selection when k > n. For they require that there be at

least k distinct items selected, which is not possible when there are less than

k waiting to be chosen.

On the other hand, the two modes permitting repetition (OþRþ and

O{Rþ) still allow selection when k > n. For example the ordered triple

(a,b,a) represents a selection of three items under mode OþRþ, out of a set

fa,bg of two items. Likewise, using the notation introduced in the last Alice

box, the (unordered) set f(a,2), (b,1)g represents a selection of three items

out of the same set fa,bg under mode O{Rþ.

So far, we have been calling the four modes by their codes; it is time to give

them names. Two of the four modes { those where repetition is not allowed { have

long-standing and universally accepted names.

l When order matters (and repetition is not allowed), i.e. OþR{, the mode of

selection is called permutation. The function counting the number of permuta-

tions of n elements k at a time is written P(n,k), or in some texts as nPk or nPk.

l When order does not matter (and repetition is not allowed), i.e. O{R{, the

mode of selection is called a combination. The function counting the number of

combinations of n elements k at a time is written C(n,k), or for some authors,

nCk or nCk. A common two-dimensional notation, very convenient in complex

calculations, puts the n above the k within large round brackets.

These two modes are the ones that tend to crop up most frequently in

traditional mathematical practice, e.g. in the formulation of the binomial theo-

rem, which goes back to the sixteenth century. They are also the most common in

computer science practice. On the other hand, for the modes allowing repetition,
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terminology is distressingly variable from author to author. The simplest names

for these two modes piggy-back on the standard ones for the modes without

repetition, as follows.

l When order matters (but now repetition is allowed), i.e. when we are in the

mode OþRþ, we will speak of permutations with repetition allowed.

l When order does not matter (but now repetition is allowed), i.e. when we are in the

mode O{Rþ, we will speak of combinations with repetition allowed.

In the following table we summarize the nomenclature. Note that it lists the

four modes in a sequence different from that which was convenient for a con-

ceptual explanation. The order in Table 5.2 is more convenient for numerical

analysis; it corresponds to the order in which we will shortly establish their

respective counting formulae. It also corresponds, very roughly, to their relative

importance in applications.

We use the term selection to cover, quite generally, all four modes. The subject

of counting selections is often nicknamed the theory of perms and coms.

5.4 Counting Formulae: Permutations
and Combinations

So far we have been doing essentially conceptual work, sorting out different modes

of selection. We now present counting formulae for the four modes of selection

that were distinguished. We begin with the two in which repetition is not allowed:

permutations and combinations.

Table 5.2 Four modes of selecting k items from an n-element set

Generic Term Mode of Selection Particular Modes Notation

Selection

OþR{ Permutations P(n,k)

O{R{ Combinations C(n,k)

OþRþ Permutations with repetition
allowed

O{Rþ Combinations with repetition
allowed

Table 5.3 Formulae for k-permutations and k-combinations (without repetition) from an
n-element set.

Mode of Selection Notation Standard Name Formula Proviso

OþR{ P(n,k) Permutations n! / (n{k)! k � n

O{R{ C(n,k) Combinations n! / k!(n{k)! k � n
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At this stage, it is tempting to plunge into a pool of examples to practice

applying the counting formulae. Indeed, this is necessary if one is to master the

material. But by itself it is not enough. We also need to see why each of the

formulae does its job; that also helps understand when it, rather than its neigh-

bour, should be used in a given problem.

EXERCISE 5.4.1

(a) Check that the figures obtained in Section 5.3 for choosing 2 out of 5

agree with these formulae.

(b) Calculate the figures for choosing 4 out of 9.

5.4.1 The Formula for Permutations (OþR{)

For intuition, we begin with an example. How many six-digit numerals are

there in which no digit appears more than once? The formula in our table says

that it is 10! / (10{6)! ¼ 10! / 4! ¼ 10 �9 �8 �7 �6 �5 ¼ 151,200. How do we get

this?

We use the multiplication principle. There are n ways of choosing the first

item. As repeated choice of the same element is not allowed, we thus have only

n{1 ways of choosing the second, then only n{2 ways of choosing the third, and so

on. If we do this k times, the number of possible selections is thus:

n �(n{1) �(n{2) � . . . �(n{(k{1)). Multiplying this by (n{k)! / (n{k)! gives us

n! / (n{k)! in agreement with the counting formula.

Alice Box: The proviso k � n

Alice: Why the condition that k � n?

Hatter: Well, conceptually, as we noticed in an exercise earlier in this chapter,

it is impossible to select more than n elements from an n-element set if we do

not allow repetition. Numerically, when k> n then n{k and so also n! / (n{k)!

are negative, which doesn’t make much sense in counting. So we leave the

function C(n,k) undefined when k > n or, if you prefer, set it at 0.

Alice: OK. But what happens when k = n? It worries me, because in that case

n{k is 0, and in Chapter 4 the factorial function was defined only for positive

integers.

(Continued)
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Alice Box: (Continued)

Hatter: True. To cover that case, it is conventional to extend the definition of

factorial by setting 0!¼ 1. So when k = n we have P(n,k)¼P(n,n)¼ n! / (n{n)!¼
n! / 0!¼ n!

Alice: So we can say that P(n,n) = n!

Hatter: Yes, and that is an important case of the general principle. We will be

using it very shortly.

EXERCISE 5.4.2 (WITH PARTIAL SOLUTION)

(a) Use the formula to calculate each of P(6,0),. . .P(6,6).

(b) You have 15 ties, and you want to wear a different one each day of the

working week (five days). For how long can you go on without ever

repeating a weekly sequence?

Solution to (b): Our base set is the set of ties, with 15 elements, and we are

selecting 5 with order significant and repetition not allowed. We can thus apply

the formula for permutations. There are thus 15! / (15�5)! ¼ 15! / 10! ¼
15�14�13�12�11¼ 360,360 possible weekly selections. That means you can go

on for nearly 7,000 years without repeating a weekly sequence. Moral: you have

too many ties!

EXERCISE 5.4.3 (WITH SOLUTION)

(a) How would you interpret the meaning of P(n,k) when k¼ 0, in words of

ordinary English? Is the counting formula reasonable in this limiting

case?

(b) Compare the values of P(n,n) and P(n,0). Any comments?

Solutions:

(a) P(n,0) is the number of ways of selecting nothing from a set of n

elements. The counting formula gives the value P(n,0) ¼ n! / n! ¼ 1.

That is, one way of selecting nothing.

(b) P(n,n) ¼ n! / (n{n)! ¼ n! / 0! ¼ n! while as we have seen, P(n,0) ¼ 1.

Clearly P(n,k) takes its largest possible value when k ¼ n, and its

smallest when k ¼ 0.
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5.4.2 The Formula for Combinations (O{R{)

For concreteness, we again begin with an example. How many ways are there of

choosing a six-person subcommittee out of a full ten-person committee? It is under-

stood here that the order of the members of the subcommittee is of no consequence,

and that all six members of the subcommittee must be different people. That is, we

are counting combinations (mode O{R{). The counting formula in the table gives us

C(10,6) ¼ 10! / 6!4! ¼ 10�9�8�7 / 4�3�2 ¼ 5�3�2�7 ¼ 210 { a tiny fraction of the

151,200 for permutations (to be precise, one 6!th i.e. one 720th). Order matters!

To understand the reasoning behind this formula, notice that it says in effect

that C(n,k)¼P(n,k) / k!, so it suffices to prove that. Recall that C(n,k) counts the

number of k-element subsets of an n-element set. We already know that each such

subset can be given P(k,k) ¼ k! orderings. Hence the total number P(n,k) of

ordered subsets is C(n,k) �k! so that C(n,k) ¼ P(n,k) / k! ¼ n! / k!(n{k)!.

EXERCISE 5.4.4 (WITH PARTIAL SOLUTION AND COMMENTS)

(a) Use the formula to calculate each of C(6,0),. . .,C(6,6).

(b) Draw a chart with the seven values of k (0 � k � 6) on the abscissa

(horizontal axis) and the values of each of P(6,k) and C(6,k) on the

ordinate (vertical axis).

(c) Your investment advisor has given you a list of eight stocks attractive

for investment. You decide to invest in three of them. How many

different selections are possible?

(d) Same scenario, except that you decide to invest $1,000 in one, double

that in another, and double that again in a third. How many different

selections are possible?

(e) Same scenario, except that your adviser also gives you a ranking of the

stocks by risk. You decide to invest $1,000 in a risky one, double that in

a less risky one, and double that again in an even less risky one. How

many different selections are possible?

Solutions to (c) and (d) and comments on (e): These three questions

illustrate how important it is to understand, before any calculation, what

kind of selection we are supposed to be making.

(c) It is implicit in the formulation of this question that you wish to invest

in three different stocks { no repetition. It is also implicit that the order

of the selection is to be disregarded { we are interested only in the
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subset selected. So we are counting combinations (mode O{R{) and

can apply the formula for C(n,k), to get C(8,3)¼ 8! / 3!5!¼ 8 �7�6 / 3 �2
¼ 4 �7 �2 ¼ 56.

(d) In this question it is again assumed that there is no repetition, but the

order of the selection is regarded as important { we are interested in

which stock is bought in what volume. So we are back with permuta-

tions (mode OþR{), and should apply the counting formula for P(n,k),

to get P(8,3) ¼ 8! / 5! ¼ 8 �7 �6 ¼ 336.

(e) Comments: This question is much trickier, and makes quite a few

implicit assumptions. It assumes that the ranking of estimated risk

does not put all stocks on the same level, indeed that there are at least

three different levels. To simplify life, let’s suppose that the risk ranking

is linear { no two stocks on the same level. So we have 8 levels.

Now, the first choice must not be from the least risk level, nor from next

risk level, but may be from any of the subsequent risk levels. The second

choice depends to a certain extent on the first one: it must be on a lesser risk

level, but still not the least risky one. And the third choice depends similarly

on the second. We thus have quite a complex problem { more than a simple

application of any one of the counting formulae in our table. A moral of this

story is that real-life counting problems, apparently simple in their verbal

presentation, can be quite nasty to solve.

EXERCISE 5.4.5 (WITH PARTIAL SOLUTION)

(a) How would you interpret the meaning of C(n,k) when k¼ 0, in words of

ordinary English?

(b) Why is C(n,k) � P(n,k) for all n,k with 1 � k � n?

(c) State and prove a necessary and sufficient condition on n,k for C(n,k)<

P(n,k).

(d) Compare the values of C(n,n), C(n,1) and C(n,0) with their counter-

parts P(n,n), P(n,1) and P(n,0) and explain the similarities/differences

in intuitive terms.

(e) Show from the counting formula that C(n,k) ¼ C(n,n{k).

(f) Suppose that n is even, i.e. n ¼ 2m. Show that for j < k � m we have

C(n,j) < C(n,k).

(g) Same question but with n odd, i.e. n ¼ 2mþ1.
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Solutions to (d), (e):

(d) C(n,n) ¼ n! / n!(n{n)! ¼ n! / n!0! ¼ 1, while C(n,1) ¼ n! / 1!(n{1)! ¼
n! / (n{1)!¼ n, and C(n,0)¼ n! / 0!(n{0)!¼ n! / 0!n!¼ 1. Compare this

with P(n,n) ¼ n!, P(n,1) ¼ n and P(n,0) ¼ 1 as already established.

Explanation: We have C(n,0) ¼ P(n,0) because there is just one way of

selecting nothing, irrespective of order. Also, C(n,1) ¼ P(n,1) because when

you are selecting just one thing, the question of order of selection does not

arise. But C(n,n) ¼ 1 < n! ¼ P(n,n) because there is just one (unordered)

subset of all the n items in our pool, but n! ways of putting that subset in order.

(e) By the counting formula, C(n,n{k) ¼ n! / (n{k!)(n{(n{k))! ¼
n! / (n{k!)k! ¼ n! / k!(n{k)! ¼ C(n,k) again by the counting

formula.

We note a trivial but very useful consequence of our formula for combinations.

Suppose that we are given a set A with n elements, equipped with a fixed order.

How many ways of choosing k items from A without repetition in this fixed order?

Reflection reveals that is the same as the number of ways of choosing k items

from A disregarding order (and again without repetition), i.e. C(n,k). The reason

is that there is a bijection between the two classes of selections. Consider the

function that takes an arbitrary subset X of A to the ordered tuple formed by

writing its elements in the fixed order. Clearly this is injective and onto.

In general: for counting selections from a set, fixed order on that set is

equivalent to disregarding order on that set. This simple (if rather roughly

expressed) fact will help us establish our counting formula for the last mode of

selection.

Alice Box: The principle of inclusion and exclusion

Hatter: This is a good moment for you to cash in the rain-check that you

received in the first section of this chapter. Remember that we learned how to

calculate the number of elements of A[B, for arbitrary finite sets A,B, given

the number in each of A, B, and A\B.

Alice: Yes, #(A[B)¼ #(A) þ #(B) { #(A\B). That was the addition

principle for two arbitrary sets, and I wanted to generalize it to n arbitrary

sets.

Hatter: Let’s begin by analysing what happened for two sets. We counted the

elements of A and B separately and added them. But as the two sets may not

(Continued)
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Alice Box: (Continued)

be disjoint, that counted the elements in A\B twice, so we subtract them

once.

Alice: And for three sets?

Hatter: For three sets the rule is:

#(A[B[C) ¼ #(A) þ #(B) þ #(C) { #(A\B) { #(B\C) { #(A\C)

þ #(A\B \C).

Here we begin by adding the number of elements in A,B, and C. But some of

these may be in two or more of the sets, so we will have overcounted, by counting

those elements at least twice. So in the next stage we subtract the number of

elements that are in the intersection of any two of the sets. But then we may

have undercounted, for if there is an item x that is in all three sets, it was counted

three times in the first stage and then subtracted three times in the second stage,

and thus needs to be added in again, which is what we do in the last stage.

Alice: What’s the general rule?

Hatter: Let A1,...,An be any sets with n � 1. The cardinality of their union

A1[. . .[An is the sum of the following numbers:

þ (the sum of the cardinalities of the sets taken individually)

{ (the sum of the cardinalities of the sets intersected two at a time)

þ (the sum of the cardinalities of the sets intersected three at a time)

{ (the sum of the cardinalities of the sets intersected four at a time)

.....................

� (the sum of the cardinalities of the n sets intersected n at a time)

Alice: Why the � at the end?

Hatter: Because it depends on whether n is even or odd: if n is odd, then it will

beþ, if n is even, then it is {. Of course, this rule can be written in a much more

concise mathematical notation, but for our purposes, we can leave that aside.

Alice: How does that tie in with what we are doing now?

Hatter: Combinations! For example, in the second line of the rule, we need to work

out the sum of the cardinalities of the sets Ai\Aj for all distinct i,j� n. How many

such sets are there? Well, there are C(n,2) two-element subsets fAi, Ajg of the n-

element setfA1,...,Ang, so there are C(n,2) such intersections to consider. In other.

(Continued)
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Alice Box: (Continued)

words, the second line of our rule asks us to make the sum of C(n,2) numbers.

Likewise the third line of the rule asks for the sum of C(n,3) numbers, and so on

Alice: What is the name of this rule?

Hatter: Traditionally it is called the principle of inclusion and exclusion,

because you first include too much then exclude too much. But personally I

prefer to call it by an even more graphic name: the principle of overcounting

and undercounting.

EXERCISE 5.4.6

(a) Draw a Euler diagram representing three intersecting sets, label the

relevant areas, and paraphrase the rule of inclusion and exclusion in

terms of the areas.

(b) Write out the principle of inclusion and exclusion in full for the

case n ¼ 4. Then calculate C(4,k) for each k ¼ 1,..,4 to check that

at each stage you have made the right number of inclusions or

exclusions.

5.5 Counting Formulae: Perms and Coms
with Repetition

We now consider the two modes of selection that allow repetition of the selected

elements. The table below adds these two modes into the table that we had for the

non-repetitive selections.

Table 5.4 Formulae for four modes of selecting k items from an n-element set.

Mode of
Selection

Notation Standard Name Formula Proviso Example:
n ¼ 10, k ¼ 6

OþR{ P(n,k) Permutations n! / (n{k)! k � n 151,200

O{R{ C(n,k) Combinations n! / k!(n{k)! k � n 210

OþRþ Permutations
with repetition

nk none 1,000,000

O{Rþ Combinations with
repetition

(nþk{1)! /
k!(n{1)!

n � 1 5,005
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5.5.1 The Formula for Permutations with Repetition
Allowed (OþRþ)

We are looking at the number of ways choosing of k elements from a n-element set,

this time allowing repetitions and distinguishing orders. To fix ideas, keep in mind

a simple example: how many six-digit telephone numbers can be concocted with

the usual ten digits 0{9. The formula tells us that there are 106 ¼ 1,000,000. Far

more than the figure of 151,200 for plain permutations where repetition is not

allowed, and dwarfing the 210 for combinations. What is the reasoning?

As for plain permutations, we apply the multiplication principle. Clearly,

there are n ways of choosing the first item. But, as repetition is allowed, there

are again n ways of choosing the second, and so on, thus giving us n � . . . �n (k times)

i.e. nk possible selections.

In a more abstract language: each selection can be represented by an ordered

k-tuple of elements of the basic set, so that the set of all the selections corresponds

to the Cartesian product of the n-element set by itself k times, which we have seen

by the principle of multiplication has cardinality nk. As we remarked earlier, this

is the same as the number of functions from a k-element set such as f1,. . .,kg into

an n-element set such as f1,. . .,ng.
Note that this operation makes perfectly good sense even when k > n. For

example, if only two digits may be used, we can construct six-digit telephone

numbers out of them, and there will be 26 of them.

EXERCISE 5.5.1 (WITH PARTIAL SOLUTION)

(a) What happens in the limiting case that n¼ 1? Does the figure provided

by the formula square with intuition? Likewise for n ¼ 0.

(b) What about the limiting case that k ¼ 1? Does the figure given by the

formula make intuitive sense? Similarly for k ¼ 0.

(c) The drinks machine has three kinds of coffee, four kinds of soft drink,

still water and sparkling water. Every working day I buy a coffee to

wake up in the morning, a bottle of water to wash down lunch, and a

soft drink for energy in the afternoon. Assuming that I start work on a

Monday and work five days a week, how many weeks before I am

obliged to repeat my daily selection?

Solution to (a), with comments: When n ¼ 1 then nk ¼ 1 for any k.

Intuitively, this is what we want, for there is only one way to write down

the same thing k times. When n ¼ 0 then nk ¼ 0 for any k � 1. This is also
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intuitively natural: in this case no selection can be made since there is

nothing to select from. The ultra-limiting case where n ¼ 0 and k ¼ 0 is

rather special: here nk ¼ 00 ¼ 1, not 0.

One could accommodate this with intuition by reflecting that in this

case, we are asked to select nothing from nothing, and by doing nothing we

achieve just that, so that there is one selection (the empty selection) that

does the job. This contrasts with the fact that if we are asked to select

something from nothing (the case n¼ 0, k� 1), there is no way of doing it {

not even by doing nothing! So intuition, carefully cultivated, accords with

the formula after all.

That said, it should also be granted that, in mathematics, definitions

sometimes give rather odd-looking outcomes in their limiting cases. Never-

theless, so long as the definition works as desired in the principal cases, the

mathematician is pretty much free in the limiting ones to stipulate what-

ever permits the smoothest formulation and proof of general principles.

Reflection on such limiting cases sometimes gives interesting philosophical

perspectives.

5.5.2 The Formula for Combinations with Repetition
Allowed (O{Rþ)

Example: A ten-person committee needs volunteers to handle six tasks. We are

not interested in the order of the tasks, and dedicated members are allowed to

volunteer for more than one task. How many different ways may volunteers come

forward?

Since we are not interested in the order in which the tasks are performed, but

we do allow multiple volunteering, we need to apply the formula for combinations

with possible repetition in Table 5.4. This tells us that it is (10þ6{1)! / 6!(10{1)!

¼ 15! / 6! 9! ¼ 15 �14 �13 �12 �11 �10 / 6 �5 �4 �3 �2 ¼ 7�13�11 �5 ¼ 5,005. More than

the 210 for plain combinations, but still much less than the 151,200 for plain

permutations, not to speak of the 1,000,000 for permutations with repetition

allowed.

This mode was the trickiest to interpret in terms of functions in Section 5.3,

and its counting formula is likewise the trickiest to prove. The basic idea of the

argument is to re-conceptualize the question as one of selecting with neither order

nor repetitions, i.e. using combinations, from a larger set of elements.

As mentioned in conversation with Alice, we are in effect counting the number

of functions f from a set fa1,. . .,ang or simply f1,. . .,ng with n elements into
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f0,. . .,kg such that f(a1)þ...þf(an) ¼ k. Consider any such function f. To get the

gestalt, we think of ourselves as provided with a sufficiently long sequence of slots,

which we fill up to a certain point in the following way. We write 1 in each of the

first f(a1) slots, then a labelþ in the next slot, then 2 in each of the next f(a2) slots,

then a label þ in the next one, and so on up to the (n{1)th label þ, and finally

write n in each of the next f(an) slots, and stop. This makes sense provided n � 1.

Careful: we do not put a þ at the end: we use n{1 plus-signs just as in the

expression f(a1)þ...þf(an). The construction will thus require kþ(n{1) slots,

since f(a1)þ...þf(an) ¼ k and we insert n{1 plus-signs.

Now the slot pattern we have created is in fact fully determined by the total

number kþ(n{1) of slots and the particular slots where the plus-signs go. This is

because we can recuperate the whole pattern by writing 1 s in the empty slots to

the left of the first plus-sign, then 2 s in the empty slots to the left of the second

plus-sign, and so on up to (n{1)s in the empty slots to the left of the (n{1)th plus-

sign and, not to be forgotten, ns in the remaining empty slots to the right of the

last plus-sign until all kþ(n{1) slots are occupied. So in effect, we are looking at

the number of ways of choosing n{1 slots for plus-signs from a set of kþ(n{1) slots.

The n{1 plus-sign-slots must be distinct from each other (we can’t put two plus-

signs in the same slot), and we are holding the order of the items fixed.

Thus, recalling the observation made when discussing combinations { that for

counting selections from a set, fixed order on that set is equivalent to disregarding

order on that set { we have reduced applications of combination with repetition

(O{Rþ) to rather larger applications of plain combination (O{R{). Specifically,

we have shown that O{Rþ(n,k) ¼ C(kþn{1, n{1).

The rest is calculation: C(kþn{1, n{1) ¼ (kþn{1)! / (n{1)! ((kþn{1){(n{1))!

¼ (kþn{1)! / (n{1)! k! ¼ (nþk{1)! / k! (n{1)! { which is the counting formula in

Table 5.4.

EXERCISE 5.5.2 (WITH PARTIAL SOLUTION)

(a) Use the formula to calculate the number of combinations with repeti-

tion of 6 items taken k at a time, for each k ¼ 1,. . .,8.

(b) The restaurant has five flavours of ice-cream, and you can ask for one

ball, two balls, or three balls (unfortunately, not the same price). How

many different servings are possible?

Solution to (b): We are looking at a set with 5 elements (the flavours), and

at selections of one, two, or three items (the balls), allowing repetition. Does

order count? Well, the formulation of the problem is rather vague. Two

interpretations suggest themselves.
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First interpretation. If the balls are laid out in a row on a suitably shaped

dish, we might regard the serving strawberry/chocolate/vanilla as different

from chocolate/vanilla/strawberry. In that case, we are in the mode

OþRþ, and reason as follows. Break the set of selections down into three

disjoint subsets { those with one ball, two balls, three balls. Calculate each

separately. There are 51¼ 5 selections with one ball, 52¼ 25 with two balls,

53 ¼ 125 with three balls. So there are in total 5þ25þ125 ¼ 155 possible

selections.

Second interpretation. But if we don’t care about the order in which the

balls are distributed on the plate { for example, if they are set out in

triangular fashion in a round dish, or haphazardly { then we are in mode

O{Rþ, and reason as follows. Again, break the set of selections into three

disjoint subsets, and calculate each separately. There are still 5 selections

with one ball, since order becomes irrelevant in that case, and (5þ1{1)! /

1!(5{1)!¼ 5!/4!¼ 5. But there are now only (5þ2{1)! / 2!(5{1)!¼ 6! / 2!4!¼
3�5¼ 15 selections with two balls, and just (5þ3{1)! / 3!(5{1)!¼ 7! / 3!4!¼
7�5 ¼ 35 with three balls, totalling only 5þ15þ35 ¼ 55 possible selections.

5.6 Rearrangements and Partitions

5.6.1 Rearrangements

How many ways of arranging the letters in banana? This sounds very simple, but

its analysis is quite subtle. At first sight, it looks like a case of permutations

allowing repetition: order definitely matters since banana 6¼ nabana, and there are

repeats since only three letters are filling six places. But there is also a big

difference: the amount of repetition is predetermined: there must be exactly

three as, two ns, one b.

Selections of this kind are usually called rearrangements. We will follow this

terminology, but you should be aware that the term is sometimes used more

broadly for any transformation where order is significant.

It is important to begin with the right gestalt. In the case of ‘banana’, don’t

think of yourself as selecting from a three-element set consisting of the letters

a,n,b. Instead, focus on a six-element set consisting of the six occurrences of letters

in the word, or six slots ready for you to insert those occurrences. This done, there

are two ways of conceptualising this problem. They give the same numerical

result, but provide an instructive contrast.
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5.6.1.1 First Method

Let’s look at the first approach. We think in terms of the six letter-occurrences. To

distinguish them from letters-as-types we rewrite the word with subscripts:

ba1n1a2n2a3.

Analysis of the example: We know that there are P(6,6) ¼ 6! ¼ 720 permuta-

tions of the set A ¼ fb1, a1, n1, a2, n2, a3g. Clearly dropping the subscripts from a

identifies 3! ¼ 6 of these, and dropping the subscripts from n identifies another

2!¼ 2 of them. Thus the number of rearrangements of the letters is 720 / 6 �2¼ 60.

Generalizing from 6 to n: Suppose we are given a word with n letter-occurrences,

made up of k letters, with those letters occurring m1,. . ., mk times. Then there are

n! / m1!. . . mk! rearrangements of the letters in the word.

Abstracting from words and letters: Given a set with A with n elements and a

partition of A into k cells with m1,. . ., mk elements, the pointwise induced parti-

tion of the set of all permutations of A has n! / m1!. . . mk! elements.

By the pointwise induced partition we mean one that puts n-tuples (a1,. . .,an) and

(a1
0,. . .,an

0) in the same cell iff ai and ai
0 are in the same cell as each other for all i� n.

So we are counting the cells of a specific partition { not of the given partition of

A, but of the pointwise induced partition of the set of all permutations of A. This

contrasts subtly with what will be done using the second method.

5.6.1.2 Second Method

The second approach begins on a rather more abstract level. This time we think in

terms of six slots s1,. . .,s6 ready to receive letter-occurrences.

Analysis of the example: The rearrangements of the letters can be thought of as

functions f that take elements of the three-element set fa,n,bg to subsets of fs1,. . .,s6g
in such a way that f(a) has three elements, f(n) has two, f(b) is a singleton, and the

family ff(a), f(n), f(b)g partitions fs1,. . .,s6g. How can we count these functions?

We know that there are C(6,3) ways of choosing a three-element subset for

f(a), leaving 3 slots unfilled. We have C(3,2) ways of choosing a two-element

subset of those three slots for f(n), leaving 1 slot to be filled with the letter b. That

gives us C(6,3) �C(3,2) �C(1,1) selections. Calculating using the formula already

known for combinations:

Cð6; 3Þ � Cð3; 2Þ � ð1; 1Þ ¼ ½6! = 3!ð6� 3Þ!	 � 3! = ½2!ð3� 2Þ!	 � ½1! = ½1!ð1� 1Þ!	

¼ ½6! = 3! 3!	 � ½3! = 2!	

¼ 20 � 3

¼ 60

which is the same figure as we obtained by the first method.
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Generalizing from 6 to n: We have a set fa1,. . .,akg of k letters to be written

into a set fs1,. . .,sng (k� n) of slots, with each letter ai being written in mi slots. So

we are looking at functions f that take elements of the set fa1,. . .,akg to subsets

of fs1,. . .,sng in such a way that each of f(ai) has mi elements and the family ff(ai) :

i � k)g partitions fs1,. . .,sng. How can we count these functions?

We know that there are C(n,m1) ways of choosing an m1-element subset for f(a1),

leaving n{m1 slots unfilled. We have C(n{m1, m2) ways of choosing an m2-element

subset of those slots for f(a1), leaving n{m1{m2 slots to be filled, and so on until all the

n slots are used up. Clearly this can be done in the following number of ways:

Cðn;m1Þ � Cðn�m1;m2Þ � . . . � Cðn�m1 �m2 � . . .�mk�1;mkÞ

This formula looks pretty ghastly. But if we write it out using the formula for

combinations and then do successive cancellations, it simplifies beautifully, coming

down to n! / m1!. . . mk! { which is the same formula as obtained by the other method.

Abstracting from words and letters: We want to count the number of functions

f that take elements of a k-element set fa1,. . .,akg to subsets of an n-element set

fs1,. . .,sng (k � n) such that each set f(ai) has mi elements and the family ff(ai) :

i � k)g partitions fs1,. . .,sng. The formula is:

Cðn;m1Þ � Cðn�m1;m2Þ � . . . � Cðn�m1 �m2 � . . .�mk�1;mkÞ

¼ n!=m1! . . .mk!

EXERCISE 5.6.1

(a) Using the counting formula already known for combinations, write out

the formula C(n, m1) �C(n{m1, m2) � . . . �C(n{m1{m2{. . .{mk{1, mk) in

full for the case that n¼ 9, k¼ 4. Perform the successive cancellations,

and check that it agrees with 9! / m1!. . . m4!

(b) Apply the counting formula n! / m1!. . .mk! to determine how many

ways of rearranging the letters in ‘Turramurra’.

5.6.2 Counting Partitions with a Given Numerical
Configuration

The second method suggests a further step that we can take. To explain this, first note

that any partition of a finite set has a certain numerical configuration. This is a

specification of the number k of cells of the partition, and of the number mi (1� i� k)

146 5. Counting Things: Combinatorics



of elements in each of the cells. What the second method for counting rearrangements

does, in effect, is count the number of ordered partitions of A that are of a given

numerical configuration.

This immediately suggests a question: What is the number of plain (i.e.

unordered) partitions of A with a given numerical configuration? The answer is

almost as immediate. To forget the order of the k cells, simply divide by k!

Thus we have a principle for counting partitions with a given numerical

configuration. The number of partitions of an n-element set A with a given

numerical configuration (k cells, sizes m1,. . .,mk) is given by the formula n! /

m1!. . . mk! k!

EXERCISE 5.6.2

There are 9 students in a class. How many ways of dividing them into

tutorial groups of 2, 3 and 4 students for tutorials on Monday, Wednesday,

and Friday?

Solution: We are looking at a set A ¼ fa1,. . .,a9g with 9 elements, and we

want to count ways of partitioning it into three cells of specified sizes. Do we

regard the order of the cells as important? For example, do we wish to treat

the division into cells C1,C2,C3 as identical to the division into, say, cells

C2,C1,C3?

Suppose first that we do not wish to identify them. This would presum-

ably be the case if we already intend to treat C1 as the Monday tutorial, C2

as the Wednesday one, and C3 as the Friday one. Then we are looking at all

the permutations of partitions with the specified cell sizes, and our counting

formula should be n! / m1!. . . mk! giving us 9! / 2!3!4! ¼ 1260 possible ways

of dividing up the students.

Suppose alternatively that we do wish to identify divisions that differ

only in the order of their cells. This might be the case if for the present we

are merely constituting the three groups, leaving open their scheduling.

Then we are counting the number of partitions with the specified cell sizes,

so our counting formula should be n! / m1!. . . mk!k!, giving us only 9! /

2!3!4!3! ¼ 1260 /3! ¼ 1260 /6 ¼ 210 possible ways of dividing.

Comments on the solution: The answer we get depends on the method we

use, which depends in turn on the exact interpretation of the problem.

Sometimes there are only hints in the formulation to indicate which inter-

pretation is meant. On other occasions the formulation may simply be

ambiguous, in which case we say that the problem is under-determined.
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Some texts take a perverse pleasure in keeping the hints to an almost

imperceptible minimum in their problems. Not here.

We summarize the results of the section in the following table, which thus

supplements Table 5.4 for the four O�R� modes.

Alice box: Different cultures, different languages

Alice: I have been reading some other textbooks on this material, and there is

something that leaves me quite confused.

Hatter: Go ahead.

Alice: I find sentences that begin like this: ‘Let A be a set of six elements, of

which three are identical. . .’. But that doesn’t make any sense!

Hatter: Why not?

Alice: You can’t have different items that are identical. If A¼ fa,b,c,d,e,fg and

a,b,c are identical to each other, then A has at most four elements, not six.

These books seem to be speaking a different language!

Hatter: Well, at least a different dialect, and it certainly can be confusing! Let me

try to explain. The subject that we are calling ‘sets, logic and finite mathematics’

is in fact a fairly recent assemblage, made up of different topics that were

developed at different times using specific terminologies and, most unsettlingly,

conceptual structures that do not fit well with each other. Textbooks like ours try

to put them all together in one coherent story, beginning with sets.

But some of the areas are much older than the theory of sets. For example,

the theory of counting was already highly active in the seventeenth century,

and indeed goes back many centuries before { consider Fibonacci in 1202! On

the other hand, the theory of sets as we know it today, and its use to ground the

(Continued)

Table 5.5 Formulae for counting partitions.

Description Name Counting Formula

Number of partitions with a given
numerical configuration (k cells and cell
sizes m1,. . ., mk)

Partitions n! / m1!. . . mk! k!

Number of ordered partitions with a given
numerical configuration (k cells and cell
sizes m1,. . ., mk)

Rearangements,
alias ordered
partitions

n! / m1!. . . mk!
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Alice Box: (Continued)

theories of relations, functions, partitions etc, appeared only in the late nine-

teenth century. As you would expect, the conceptual frameworks were quite

different.

Today, when authors bring various disciplines between the covers of a single

book, they are torn between the demands of coherence of the integrated

structure and faithfulness to the deeply rooted terminologies of specific topics.

Usually something is given up on both sides. In this book, coherence of the

broad picture tends to take priority.

Alice: So how can I make sense of talk about selections from a set with several

identical elements?

Hatter: Above all, try to interpret what may be meant in the particular

problem. Sometimes when it speaks of identical or indistinguishable ele-

ments, it means that we have no way of telling the difference between

different orders of the elements. This is in effect a way of saying that we

are interested in selections where order is immaterial but repetition is possi-

ble, i.e. O{Rþ.

Alice: And in other cases?

Hatter: Sometimes, reference to identical, indistinguishable or indiscernible

elements is a way of pointing to a partition (in other words, an equivalence

relation) between elements. Then we have a problem of counting partitions (or

ordered partitions).

Alice: How can I tell which is when?

Hatter: No formal algorithm. It is an exercise in hermeneutics. Try to find the

most natural interpretation of the problem, taking into account its content as

well as its structure, and be attentive to little hints. There is not always a

unique answer, as different readings may sometimes be plausible. The follow-

ing exercise illustrates the task.

EXERCISE 5.6.3 (WITH HINTS FOR SOLUTION)

(a) How many ways are there to place 12 indistinguishable balls into 10

slots?

(b) There are 12 bottles of wine in a row, of which 5 are the same, another 4

the same, and another 3 the same. They are taken down and put into a

5.6 Rearrangements and Partitions 149



box. Then they are put back on the shelf. How many different results

are possible?

Hints for solution:

(a) All the balls are ‘indistinguishable’. Presumably we are not thinking of

the trivial partition with just one cell. We are envisaging the selection,

with repetition permitted but order ignored, of 12 slots from the set of

10, i.e. 12-combinations with repetition from a 10-element set. Go on

from there.

(b) From the phrasing, it appears that we are given a partition of the set of

12 bottles of wine according to their labels. The partition has three

cells, and we are asked to count the rearrangements of the 12 items

given that partition. Go on from there.

FURTHER EXERCISES

5.1. Addition and multiplication principles and their joint use

(a) A computer represents elements of Z using binary digits 0 and 1. The

first digit represents the sign (negative or positive), and the remainder

represent the magnitude. How many distinct integers can we represent

with n binary digits? Warning: Be careful with zero.

(b) I want to take two books with me on a trip. I have two logic books, three

mathematics books, and two novels. I want the two books that I take to

be of different types. How many possible sets of two books can I take

with me?

(c) In the USA, radio station identifiers consist of either 3 or 4 letters of the

alphabet, with the first letter a K or a W. Determine the number of

possible identifiers.

(d) You are in Paris, and you want to travel Paris-Biarritz-London-Paris

or Paris-London-Biarritz-Paris. There are 5 flights each way per day

between Paris and Biarritz, 13 each way between Paris and London,

but only 3 per day from London to Biarritz and just 2 in the reverse

direction. How many flight sequences are possible?

5.2. The principle of inclusion and exclusion

Amal telephones 5 different people, Bertrand telephones 10, Clarice tele-

phones 7. But 3 of the people called by Amal are also called by Bertrand, 2
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of those called by Bertrand are rung by Clarice, and 2 of those contacted by

Clarice are called by Amal. One person was called by all three. How many

people were called?

5.3. Four basic modes of selection

(a) In the first round of a quiz show, a contestant has to answer correctly

seven questions each with a yes/no answer. Another contestant has

to answer correctly two questions, each of which is multiple-choice

with seven possible answers. Assuming that both contestants are

totally ignorant and guess blindly, which faces the more daunting

task?

(b) Australia has seven states. A manager proposes to test a product in four

of those states. In how many ways may the test states be selected?

(c) Another manager, more cautious, proposes to test the product in one

state at a time. In how many ways may a test-run be selected?

(d) Even more cautious, the director decides to test the product in one

state at a time, with the rule that the test-run is terminated if a

negative result is obtained at any stage. How many test-runs are

possible?

(e) A game-board is a 4 by 4 grid of squares, and you have to move your

piece from the bottom left square to the top right one. The only moves

allowed are ‘one square to the right’ and ‘one square up’. How many

possible routes? Warning: This is more subtle than you may at first

think. The answer is not 28.

(f) You have five dice of different colours, and throw one after another,

keeping track of which is which. What is the natural concept of an

outcome here? How many such outcomes are there?

(g) You throw five dice together, and are not able to distinguish one die

from another. What is the natural concept of an outcome here, and how

many are there?

5.4. Rearrangements and partitions

(a) The candidate wins a free holiday in the place whose name admits the

greatest number of arrangements of its letters: ‘Mississippi’, ‘Ouaga-

doudou’, ‘Woolloomooloo’. Make the calculations and give the answer

to win the trip.

(b) How many arrangements of the letters in ‘Woolloomooloo’ make all

occurrences of any given letter contiguous?
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(c) How many distributions of 10 problems are possible among Albert,

Betty, Carlos and Deborah if Albert is to do 2, Betty 3, and Deborah 5.

Hint: Conceptualize this as an ordered partition.

(d) How many ways of dividing 10 problems up into three groups of 2, 3

and 5 problems?

(e) Which is larger: the number of partitions of a set with 12 elements into

three sets of four elements, or the number of partitions of the same set

into four sets of three elements?

Selected Reading

Almost every text on discrete mathematics has a chapter on this material some-

where in the middle, and although terminology, notation and order of presenta-

tion differ from book to book the material covered is usually much the same. One

clear beginner’s exposition is:

Rod Haggarty Discrete Mathematics for Computing. Pearson, 2002, Chapter 6.

Other presentations include:

John Dossey et al. Discrete Mathematics. Pearson, 2006 (fifth edition),

Chapter 8.

James L. Hein Discrete Structures, Logic and Computability. Jones and Bar-

tlett, 2005 (second edition), Chapter 5.3.

Richard Johnsonbaugh Discrete Mathematics. Pearson, 2005 (sixth edition),

Chapter 6.

Seymour Lipschutz Discrete Mathematics. McGraw Hill Schaum’s Outline

Series, 1997, Chapter 6.
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6
Weighing the Odds: Probability

Chapter Outline

In this chapter, we introduce the elements of probability theory. In the spirit

of the book, we confine ourselves to the discrete case, i.e. probabilities on finite

domains, leaving aside the infinite one.

We begin by defining probability functions on a finite sample space and

identifying some of their basic properties. So much is simple mathematics. This

is followed by some words on different philosophies of probability, and warnings

of traps that arise in applications. Then back to the mathematical work, introdu-

cing the concept of conditional probability and setting out its properties, its

connections with independence, and its role in Bayes’ theorem. In the final section

we explain the notions of a ‘random variable’ or payoff function, expected value,

and induced probability distribution.

6.1 Finite Probability Spaces

In the chapter on principles of counting (alias combinatorics), we remarked that

the area is rather older than the modern theory of sets, and tends to keep

some of its traditional ways of speaking even when the ideas can be expressed

in a standard set-theoretic manner. The same is true of probability theory,

creating problems for both reader and writer of a textbook like this. If we simply

follow the rather loose traditional language, the reader may fail to see how it

D. Makinson, Sets, Logic and Maths for Computing,
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rests on fundamental notions. On the other hand, if we translate everything into

set-theoretic terms the reader is ill-prepared for going on to other expositions.

For this reason we follow a compromise approach. We make use of traditional

probabilistic terminology, but at each step show how it is really serving as short-

hand for a uniform one in terms of sets and functions. A table will be used to keep a

running tally of the correspondences.

It turns out that applications of probability theory to practical problems often

need to deploy the basic counting principles that were developed in the preceding

chapter, and so the reader should be ready to flip back and forth to refresh the

mind whenever needed.

6.1.1 Basic Definitions

The first concept that we need in discrete probability theory is that of a sample

space. Mathematically, this is just an arbitrary finite (but non-empty) set S. The

term ‘sample space’ merely indicates that we intend to use it in a probabilistic

framework.

A probability distribution (or just distribution for short) is an arbitrary func-

tion p: S! [0,1] such that �fp(s): s2 Sg= 1, i.e. the sum of the values p(s) for s2 S

is equal to one. Recall that [0,1], often called the real interval, is the set of all real

numbers from 0 to 1 included, i.e. [0,1] = fx 2 R: 0 � x � 1g. Actually, in the

context of discrete probability, i.e. where S is a finite set, we could without loss of

generality reduce the target of the probability function to the set of all rational

numbers from 0 to 1. But we may as well allow the whole of the real interval,

which gives us no extra trouble and will be needed if ever you pass to the

infinite case.

EXERCISE 6.1.1 (WITH SOLUTION)

Let S be the set fa,b,c,d,eg. Which of the following functions p are prob-

ability distributions on S? Give a reason in each case.

(a) p(a) ¼ 0.1, p(b) ¼ 0.2, p(c) ¼ 0.3, p(d) ¼ 0.4, p(e) ¼ 0.5.

(b) p(a) ¼ 0.1, p(b) ¼ 0.2, p(c) ¼ 0.3, p(d) ¼ 0.4, p(e) ¼ 0.

(c) p(a) ¼ 0, p(b) ¼ 0, p(c) ¼ 0, p(d) ¼ 0, p(e) ¼ 1.

(d) p(a) ¼ �1, p(b) ¼ 0, p(c) ¼ 0, p(d) ¼ 1, p(e) ¼ 1.

(e) p(a) ¼ p(b) ¼ p(c) ¼ p(d) ¼ p(e) ¼ 0.2.
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Solution: (a) No: the values do not add to one. (b) Yes: values are in

the real interval and add to one. (c) Yes: same reason. (d) No: not all

values are in the real interval. (e) Yes: values are in the real interval

and add to one.

The last of the functions in the exercise is clearly a very special one: all the

elements of the sample space receive the same value. This is known as

an equiprobable (or uniform) distribution, and is particularly easy to work with.

Given a sample space S with n elements, there is evidently just one equiprobable

distribution p: S![0,1], and it puts p(s) ¼ 1/n for all s 2 S. But it should be

understood that this is a special case, not only mathematically but also in

practice. Many problems involve unequal distributions, and we cannot confine

ourselves to equiprobable ones.

Given a distribution p: S![0,1], we can extend it to a function pþ on the

power set P(S) of S by putting pþ(A)¼�fp(s): s 2Agwhen A is any non-empty

subset of S, and pþ(A)¼ 0 in the limiting case that A¼�. This is the probability

function determined by the distribution p and, to keep notation down, we

usually drop the superscript and also call it p. Note that even for a very small

set S there will be infinitely many distributions on S, but each of them deter-

mines a unique probability function on P(S) or, as one also says, over S. The pair

made up of the sample space S and the probability function p: P(S)! [0,1] is

called a probability space. Traditionally, the elements of P(S), i.e. the subsets of

S, are called events.

6.1.2 Properties of Probability Functions

Some basic properties of probability functions may be obtained easily from the

definition.

EXERCISE 6.1.2 (WITH SOLUTION)

Let p: P(S)! [0,1] be a probability function over the sample space S. Show

that p has the following properties (where A,B, are arbitrary subsets of S).

(a) p(�) ¼ 0.

(b) p(S) ¼ 1.

(c) p(A[B) ¼ p(A) þ p(B) � p(A\B).

(d) When A\B ¼ � then p(A[B) ¼ p(A) þ p(B).
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(e) p(SnA) ¼ 1�p(A).

(f) p(A\B) ¼ p(A) þ p(B) � p(A[B).

(g) When A[B ¼ S then p(A\B) ¼ p(A) þ p(B) � 1 ¼ 1 � [p(S nA) þ
p(SnB)].

Solution:

(a) Explicit in the definition of a probability function, limiting case.

(b) p(S)¼ �fp(s): s 2 Sg ¼ 1 by the definition of a probability function (for

the first equality) and the definition of a distribution (for the second).

(c) p(A[B) ¼ �fp(s): s 2 A[Bg ¼ �fp(s): s 2 Ag þ �fp(s): s 2 Bg �
�fp(s): s 2 A\Bg ¼ p(A) þ p(B) � p(A\B).

(d) By (c) noting that when A\B ¼ � then p(A\B) ¼ p(�) ¼ 0.

(e) S ¼ A[(S nA) and the sets A, S nA are disjoint, so by (d) we have

p(S) ¼ p(A) þ p(S nA) and thus by arithmetic p(S nA) ¼ p(S) �
p(A) ¼ 1 � p(A) by (b).

(f) This can be shown from first principles, but it is easier to get it by

arithmetic manipulation of (c).

(g) The first equality is immediate from (f) noting that when A[B¼ S then

p(A[B)¼ p(S)¼ 1 by (b). For the second equality, p(A)þ p(B)� 1¼
(1� p(SnA)) þ (1� p(SnB)) � 1 by (e), which then simplifies arithme-

tically 1 � [p(SnA) þ p(SnB)].

Comment: Note how once we have (a{c), the others follow without going

back to the definitions of distribution or probability function. Conversely, it

is possible to get (c) by adroit exploitation of its special case (d).

In the above exercise, we used the notation SnA for the complement of A with

respect to the sample space S, in order to avoid any possible confusion with the

arithmetic operation of subtraction. Although they are closely related, they are of

course different. From now on, however, we will write more briefly {A.

It can be quite tiresome to write out the function sign p over and over again

when calculating or proving in probability theory. For problems using only one

probability function we can use a more succinct notation. For each subset A of the

sample space, we can write p(A) as A with the underlining representing the

probability function p. For example, we may write the equation p(A[B) ¼
p(A) þ p(B) � p(A\B) as A [ B ¼ A þ B � A \ B.
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But be careful! If the problem involves more than one probability function

(as for example in the iterated conditionalizations later in this chapter) this

shorthand notation cannot be used, since it cannot keep track of the different

functions. For this reason, your instructor may not like you to use it at all, so

check on class policy before using it anywhere outside rough work. In what

follows, we will stick to standard presentation.

EXERCISE 6.1.3

(a) Use the results of Exercise 6.1.2 to show that when A � B then p(A) �
p(B).

(b) Use this to show that p(A\B) � p(A) and also p(A\B) � p(B).

(c) Let S ¼ fa,b,c,dg and let p be the equiprobability distribution on S.

Give examples of events, i.e. sets A,B � S, such that respectively

p(A\B) < p(A) �p(B), p(A\B) ¼ p(A) �p(B), p(A\B) >

p(A) �p(B).

The following table keeps track of translations between traditional

probabilistic and modern set-theoretic terminology. The first seven rows

should be clear from what we have done so far; the other rows will be

explained as we continue in the chapter.

Table 6.1 Two languages for probability.

Traditional probabilistic Modern set-theoretic

sample space S arbitrary set S

sample point element of S

probability distribution function p: S![0,1] whose values sum to 1

event subset of S

elementary event singleton subset of S

null event empty set

mutually exclusive events disjoint subsets of S

experiment situation to be modelled probabilistically

p(AjB) p(A,B)

random variable X function f: S! R

range space RX range f(S) of a function f: S!R

distribution of X p8f
�1for function f: S! R and distribution p: S![0,1]

P(X ¼ x) p8f
�1(x) ¼ p(fs 2 S: f(s) ¼ xg) for x 2 R
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6.2 Philosophy and Applications

Probability theory differs from any of the topics that we have studied so far, in

two respects, one philosophical and the other practical.

Philosophically, the intuitive notion of probability is much more slippery than

that of a set. It is more perplexing than the notion of truth, which we used in logic

boxes to define connectives such as negation, conjunction, disjunction and mate-

rial implication. When we declare that an event is, say, highly improbable we are

not committing ourselves to saying that it does not take place. Indeed, we may

have a collection of events, each of which known to be highly improbable while we

also know that at least one must take place. Consider for example a properly

conducted lottery with many tickets. For each individual ticket, it is highly

improbable that it will win; but it is nevertheless certain that one will do so.

So what is meant by saying that an event is probable, or improbable? There

are two main kinds of perspective on the question.

l One of them sees probability as a measure of uncertainty, understood as a state

of mind. This is known as the subjectivist conception of probability. The

general idea is that a probability function p is a measure of the degree of belief

that a fully rational (but not omniscient) agent would have concerning various

possible events, given some limited background knowledge that is not in

general enough to believe or disbelieve them without reservation.

l The other sees probability as a manifestation of as something in the world

itself, independent of the thinking of any agent. This is known as the objectivist

conception of probability. Often, in this approach, the probability of an event

is taken to be a measure of the long-run tendency for events similar to it to take

place in contexts similar to the one within under consideration. This particular

version of the objectivist approach called the frequentist conception.

Of course, these thumbnail sketches open more questions than they begin to

answer. For example, under the subjectivist approach, what counts is not your

degree of belief or mine, nor even that of some reputed expert or guru, but rather

the degree that a rational agent would have. So how are we are to understand

rationality in this context? Surely, in the final analysis, rationality is not such a

subjective matter. Properly unpacked, the subjectivist approach may thus end up

being not so subjective after all!

On the other hand, the frequentist view leaves us with the difficult problem of

explaining what is meant by ‘contexts similar to the one within under considera-

tion’. It also leaves us with the question of why the long-run frequency of some-

thing should give us any confidence at all in the short term. As the saying goes, in
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the long run we are all dead. It is difficult to justify confidence in real-life decisions,

which need to be taken within a limited time, in terms of the frequentist approach.

It is often felt by practitioners that some kinds of situation are more easily

conceptualized in subjectivist terms, others in frequentist ones. The subjectivist

approach seems to fit better for events that are rare or unique, or about which

little data on past occurrences of similar events is available. For example, prima

facie it may be difficult for a frequentist to deal with the question of the prob-

ability of the earth being rendered uninhabitable by a nuclear war in the coming

century. On the other hand, there are other kinds of question on which lots of

data are available, on which frequencies may be calculated, and for which the

frequentist conception of probability seems appropriate. That is how insurance

companies keep afloat.

As this is not a text of philosophy, we will not take such issues any further.

We simply note that they are difficult to formulate meaningfully, tricky to handle,

and have not obtained any consensual resolution despite the centuries in which

probability theory has been studied mathematically and applied to everyday

affairs. The amazing thing is that we are able to carry on with both the mathe-

matics of probability theory and its application to the real world, without resol-

ving these philosophical issues. But this application is an art as much as a science,

and more subtle than the mathematics itself.

The first point to realize is that you cannot get probabilities out of nothing.

You have to make assumptions about the probabilities of some events in order

to deduce probabilities about others. Such assumptions should always be made

explicit, so that they can be recognized for what they are and assessed. Whereas in

textbook examples, the assumptions are often simply given as part of the problem

statement, in real life they can be difficult or impossible to determine or justify.

In practice, this means that whenever confronted with a problem of probabil-

ities, two steps must be made before attempting any calculation.

l Identify the sample space of the problem. What is the set S that we take as

domain of the probability distribution in the question?

l Specify the values of the distribution. Can it reasonably be assumed to be a

uniform distribution? If so, we already have values for the function p at each

point in the sample space (provided we know the size of the space), and we are

ready to calculate. If not, we must ask: Is there any other distribution that is

reasonable to assume?

Many students are prone to premature calculation, and training is needed to

overcome it. In this chapter, we will always be very explicit about the sample

space and the values of the distribution.
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Alice Box: Probability in the infinite case

Alice: I know that we are studying only the finite case, but could you

tell me just a little about what happens in the infinite one? Is it very

different?

Hatter: When the sample space S is infinite, the question arises what to do

with pairwise disjoint infinite unions. It is not always reasonable to extend the

principle of addition to cover them. For example, if we look at the problem of

choosing an arbitrary point from a square, it is reasonable to regard each point

as equiprobable with the others. Thus, either all points in the square get zero

probability or they all get the same non-zero probability r. But in neither case

do these probabilities sum to one. In the former case they sum to zero. In the

latter case they cannot sum to one; indeed, they cannot have a finitely large

sum. This follows from the principle of Archimedes: for every real r> 0 there

is an integer n with n �r > 1. From this it follows immediately that for

every real r > 0 and every integer k there is an integer m with m �r > k

(just put m ¼ kn).

Alice: So what do we do?

Hatter: There are essentially two paths open. One, rather radical, is to widen

the target set to contain not only real numbers but also ‘infinitesimals’ as

defined and exploited in what is called non-standard analysis. The other, more

conservative and usually followed, is to stick with the ordinary reals but

redefine the notion of a probability function. Instead of taking its domain

to be all of P(S), we take it to be any field of subsets of S, i.e. any non-

empty collection of subsets of S that is closed under the operations of

taking complements and finite unions (and thus also finite intersections).

When S is finite, every field of subsets of S is the power set of some subset

S 0 � S; but when S is infinite we can have many others. For example, the

collection of all subsets of S that are either finite or cofinite (i.e. have

finite complements with respect to S) is a field of sets.

Alice: And the principle of addition in this framework?

Hatter: Once again there are two main policies. The more conservative one

is to rest content with finite additions only. The more adventurous is to

require that the field of subsets is also closed under countable pairwise

disjoint unions and intersections and, if the field is more than countable,

assume a principle of addition for the probability of the union of a

countable family of pairwise disjoint sets. But this is going way beyond

discrete mathematics.
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6.3 Some Simple Problems

In this section we run through a series of problems, to give practice in the task of

applying the first principles of probability theory. The examples become progres-

sively more sophisticated as they bring in additional devices.

Example 1. Throw a fair die. What is the probability that the number (of dots

on the uppermost surface) is divisible by 3?

Solution and Comments: First we specify the sample space. In this case it is the set

S ¼ f1,2,3,4,5,6g. Next we specify the distribution. In this context, the term fair

means that the questioner is assuming that we have an equiprobable distribution.

The distribution thus puts p(n)¼ 1/6 for all positive n� 6. The event we have to

consider is A ¼ f3,6g and so p(A) ¼ 1/6 þ 1/6 ¼ 1/3.

Example 2. Select a playing card at random from a standard European

pack. What is the probability that it is a hearts? That it is a court card (jack,

queen, king)? That it is both? That it is hearts but not a court card? That it is

either?

Solution and Comments: First we specify the sample space. In this case it is the

set S of 52 cards in the standard European pack. Then we specify the distribution. In

this context, the term random also means that we are assuming that it is an equiprob-

able distribution. The distribution thus puts p(c)¼ 1/52 for all cards c. We have five

events to consider. The first two we call H, C and the others are H\C, HnC, H[C. In a

standard pack there are 13 hearts and 12 court cards, so p(H)¼ 13/52¼ 1/4 and p(C)

¼ 12/52¼ 3/13. There are only 3 cards in H\C so p(H\C)¼ 3/52, so there are 13�3

¼ 10 in HnC giving us p(HnC)¼ 10/52¼ 5/26. Finally, #(H[C)¼#(H)þ#(C)�
#(H\C)¼ 13þ 12� 3¼ 22 so p(H[C)¼ 22/52¼ 11/26.

Example 3. An unscrupulous gambler has a loaded die, with probability

distribution p(1) ¼ 0.1, p(2) ¼ 0.2, p(3) ¼ 0.1, p(4) ¼ 0.2, p(5) ¼ 0.1, p(6) ¼ 0.3.

Which is more probable, that the die falls with an even number, or that it falls

with a number greater than 3?

Solution and Comments: As in the first problem, the sample space is

S ¼ f1,2,3,4,5,6g. But this time the distribution is not equiprobable. Writing E

and G for the two events in question, we have E ¼ f2,4,6g while G ¼ f4,5,6g, so

p(E) ¼ p(2) þ p(4) þ p(6) ¼ 0.2 þ 0.2 þ 0.3 ¼ 0.7, while p(G) ¼ p(4) þ p(5) þ
p(6) ¼ 0.2 þ 0.1 þ 0.3 ¼ 0.6. Thus it is slightly more probable (difference 1/10)

that this die falls even than that it falls greater than 3.

Example 4. We toss a fair coin three times. What is the probability that at

least two consecutive heads appear? The probability that exactly two heads (not

necessarily consecutive) appear?

Solution and Comments: The essential first step is to get clear about the sample

space. It is not the pair fheads, tailsg or fH,Tg for short. It is the set of all
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ordered triples with elements from fH,Tg, i.e. fH,Tg3. Enumerating it in full,

S¼ fHHH, HHT, HTH, HTT, THH, THT, TTH, TTTg. As the coin is supposed

to be fair, these are considered equiprobable. Let A be the event of getting at

least two consecutive heads, and B that of getting exactly two heads (in any

order). Then A ¼ fHHH, HHT, THHg while B ¼ fHHT, HTH, THHg. Thus

p(A) ¼ 3/8 ¼ p(B).

Alice Box: Repeated tosses

Alice: Not so fast! Something is funny here.

Hatter: What’s wrong?

Alice: You seem to be making a hidden assumption. We are told that the coin

is fair, so p(H) ¼ 0.5 ¼ p(T). But how do you know that, say, p(HHH) ¼
p(HTH)¼ 1/8? Perhaps the fact of landing heads on the first toss makes it less

likely to land heads on the second toss. In that case the distribution over this

sample space will not be equiprobable.

Hatter: Nice point! In fact, we are implicitly relying on such an assumption.

We are assuming that p(H) always has the value 0.5 no matter what happened

on earlier tosses. Another way of putting it: the successive tosses have no

influence on each other { Hiþ1 is independent of Hi, where Hi is the event

‘heads on the ith toss’. We will be saying more about independence later in the

chapter.

Example 5. Seven candidates are to be interviewed for a job. Of these, four are

men and three are women. The interviews are conducted in random order. What

is the probability that all the women are interviewed before any of the men?

Solution and Comments: Let M¼ fm1,. . .,m4g be the four male candidates, and W

¼ fw1,. . .,w3g be the three female ones. Then M[W is the set of all candidates. We

take the sample space to be the set of all permutations (i.e. selections in mode

OþR�) of this seven-element set. There are P(7,7) ¼ 7! such permutations, and

we assume that they are equiprobable. An interview in which all the women come

before the men will be one in which we have some permutation of the women,

followed by some permutation of the men, and there are clearly P(3,3) �P(4,4) of

these. So the probability of such an interview pattern is P(3,3) �P(4,4)/P(7,7) ¼
3!4!/7!¼ 1/35.

This is the first example making use of a concept from the chapter on counting.

The sample space consisted of all permutations of a certain set and, since the space

is assumed equiprobable, we are calculating the proportion of them with a certain
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property. If on the other hand, a problem requires a sample space consisting of

combinations, we need to apply the appropriate formula for counting them, as in

the following example.

Example 6. Of the 10 envelopes in my letterbox, 2 contain bills. If I pick 3

envelopes at random to open today, leaving the others for tomorrow, what is the

probability that none of these three is a bill.

Solution and Comments: We are interested in the proportion of 3-element

subsets of S that contain no bills. So we take the sample space S to consist of

the set of all 3-element subsets of a 10-element set. Thus S has C(10,3) ¼
10!/3!7!¼ 120 elements. How many of these subsets have no bills? There are 8

envelopes without bills, and the number of 3-element subsets of this 8-element

set is C(8,3) ¼ 8!/3!5!¼ 56. So the probability that none of our three selected

envelopes contains a bill is 56/120 ¼ 7/15 { just under 0.5, unfortunately.

Alice Box: Combinations or permutations?

Alice: Can’t we do it with permutations too?

Hatter: Let’s try. What’s your sample space?

Alice: The set of all 3-element permutations of a 10-element set. This has P(10,3)

¼ 10!/7!¼ 10 �9 �8 ¼ 720 elements. And we are interested in the 3-element

permutations of the 8-element no-bill set, of which there are P(8,3) ¼ 8!/5!¼
8�7�6 ¼ 336 elements. As the sample space is equiprobable, the desired prob-

ability is given by the ratio 336/720 ¼ 7/15, the same as by the other method.

Hatter: So this problem may be solved by either method. However, the one

using combinations has a smaller sample space. In effect, with permutations

we are processing redundant information (the different orderings), giving us

much larger numbers in the numerator and denominator, which we then

cancel down. So it involves rather more calculation. Of course, much of the

calculation could be avoided by cancelling as soon as possible, before finding

fully numerical values for numerator and denominator. But as a general rule it

is better to keep the sample space down from the beginning.

EXERCISE 6.3.1

(a) A pair of fair dice is thrown. What is the probability that the sum of the

dots is 8? What is the probability that it is at least 5?

(b) Your debit card has a 4-digit pin number. You lose the card, which is

found by a dishonest person. The cash dispenser allows 3 attempts to
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enter the pin number. What is the probability that the person accesses

your account, assuming that he/she enters candidate pin numbers at

random, without repetition (but of course allowing repetition of

individual digits).

(c) There are 25 people in a room. What is the probability that at least two

of the people are born on the same day of the year (but not necessarily

the same year)? For simplicity, assume that each year has 365 days,

and that the people’s birthdays are randomly distributed through the

year (both assumptions being, of course, rough approximations). Hints:

(1) Be careful with your choice of sample space. (2) First find the

probability that no two distinct people have the same birthday. (3)

You will need a pocket calculator.

6.4 Conditional Probability

You throw a pair of fair dice. You already know how to calculate the probability of

the event A that at least one of the dice is a 3. Your sample space is the set of all

ordered pairs (n,m) where n,m 2 f1,. . .,6g and you assume that the probability

distribution on this space is equiprobable. There are 11 pairs (n,m) with either

n ¼ 3 or m ¼ 3 (or both) so, by the assumption of equiprobability, p(A) ¼ 11/36.

But what if we are informed, before looking at the result of the throw, that the

sum of the two dice is 5? What is the probability that at least one die is a 3, given

that the sum of the two dice is 5? This is known as conditional probability.

In effect, we are changing the sample space { restricting it from the set S of all

36 ordered pairs (n,m) where n,m 2 f1,. . .,6g, to the subset B consisting of those

ordered pairs whose sum is 5. But it is very inconvenient to have to change the

sample space each time we calculate a conditional probability. It is better to keep

the sample space fixed and obtain the same result in another, equivalent, way. So

we define the probability of A (e.g. that at least one die is a 3) given B (e.g. that the

sum of the two faces is 5) as the ratio of p(A\B) to p(B). Writing the conditional

probability of A given B as p(AjB), we put:

pðAjBÞ ¼ pðA \ BÞ=pðBÞ

In the example given, there are four ordered pairs whose sum is 5, namely

the pairs (1,4), (2,3), (3,2), (4,1), so p(B) = 4/36. Just two of these contain a

3, namely the pairs (2,3), (3,2), so p(A\B) = 2/36. Thus p(AjB) = (2/36)/

(4/36) = 2/4 = 1/2 { larger than the unconditional (alias prior) probability

p(A) ¼ 11/36.
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Note that the conditional probability of A given B is not in general the same as

the conditional probability of B given A. While p(AjB) = p(A\B)/p(B), we have

p(BjA) = p(B\A)/p(A). The numerators are the same, since A\B = B\A, but

the denominators are different: they are p(B) and p(A) respectively.

EXERCISE 6.4.1

Calculate the value of p(BjA) in the die-throwing example above, to deter-

mine its relation to p(AjB).

The non-convertibility of conditional probability should not be surprising. In

logic we know that the proposition X!Y is not the same as Y!X, and in set

theory the inclusion X�Y is not equivalent to Y�X. All three are manifestations

of the same failure of commutation or conversion.

Alice Box: Division by zero

Alice: One moment! There is something that worries me in the definition of

conditional probability. What happens to p(AjB) when p(B) ¼ 0? This will be

the situation, for example, when B is empty set. In this case we can’t put p(AjB) =

p(A\B)/p(B) = p(A\B)/0, since division by zero is not possible.

Hatter: Indeed, you are right! Division by zero is undefined in arithmetic, and

so the definition that we gave for conditional probability does not make sense

in this limiting case.

Alice: So what should we do?

Hatter: There are two main reactions. The standard one, which we will follow,

is to treat conditional probability, like division itself, as a partial function of

two arguments. Its domain is not P(S)2 where S is the sample space, but rather

P(S) � fX� S: p(X) 6¼ 0g. The second argument ranges over all the subsets of

the sample space S whose probability under the function p is greater than zero.

That excludes the empty set �, and it may also exclude some other subsets

since it can happen that p(X) ¼ 0 for some non-empty X � S.

Alice: And the other reaction?

Hatter: Reconstruct probability theory, reversing the roles of conditional and

unconditional probability. In other words, begin by taking a probability func-

tion on the sample space S to be any two-place function p: P(S)2! [0,1] on the

entire Cartesian product that satisfies certain conditions, and then introduce

unconditional probability as a limiting case, putting p(A) ¼ p(A,S). This

(Continued)
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Alice Box: (Continued)

approach is popular among philosophers, even though the conditions required

of the two-place functions are rather less intuitive than those of the standard

approach and different versions give distinct treatments of p(A,B) when p(B)

¼ p(B,S) ¼ 0. In general, however, mathematicians and statisticians are

quite happy with the standard approach that treats conditional probability

as a partial function.

Taking into account Alice’s question and the Hatter’s explanation, we give the

rigorous definition of conditional probability. Let p: P(S)! [0,1] be any probabil-

ity function on a (finite) sample space S. Then the corresponding conditional

probability function on P(S) � fX � S: p(X) 6¼ 0g is defined by the rule:

pðAjBÞ ¼ pðA \ BÞ=pðBÞ in the (principal) case that pðBÞ 6¼ 0

pðAjBÞ is undefined in the (limiting case) that pðBÞ ¼ 0:

EXERCISE 6.4.2

(a) Suppose that we know from records that, in a certain population, the

probability p(C) of high cholesterol is 0.3 and the probability p(C\H)

of high cholesterol and heart attack together is 0.1. Find the probabil-

ity p(HjC) of heart attack given high cholesterol.

(b) Suppose that we know from records from another population that the

probability p(H) of heart attack is 0.2 and the probability p(H\C) of

heart attack and high cholesterol together is 0.1. Find the probability

p(CjH) of high cholesterol given heart attack.

In the empirical sciences, conditional probability is often employed in the

investigation of causal relationships. For example, we may be interested in the

extent to which high cholesterol leads to heart attack, and use conditional

probabilities like those in the exercise above when analysing the data. But care

is needed. We are entitled to look at the probability of cholesterol (suspected

cause) given heart attack (undesirable event) just as much as at the converse

probability of heart attack (suspected effect) given cholesterol (preceding condi-

tion). As far as the mathematical theory of probability is concerned, in a condi-

tional probability p(AjB) there is no need for B to be a cause of, or even temporally
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prior to, A. Indeed, the mathematics says nothing whatsoever about any kind of

causal or temporal relationship between A and B in either direction.

For example, in Exercise 6.4.1, we calculated and compared the conditional

probabilities p(AjB) and p(BjA), where A is the event that at least one die is a 3

and B is the event that the sum of the two faces is 5. Neither of these events can

be thought of as causally related to the other, nor does either happen before or

after the other. These conditional probabilities are merely a matter of

numbers.

Even when A is an event like a heart attack and B one like high cholesterol, a

high value of p(AjB) does not imply that B is the cause (or even one among

various contributing causal factors) of A. Reasoning from high conditional prob-

ability to causation is fraught with philosophical difficulties and hedged with

practical provisos. Even reasoning in the reverse direction is not as straightforward

as may appear. We will not attempt to unravel these issues, remaining within the

mathematics of probability itself.

EXERCISE 6.4.3 (WITH SOLUTION)

(a) In a writers’ association, 60% of members write novels, 30% write

poetry, but only 10% write both novels and poetry. What is the prob-

ability that an arbitrarily chosen member writing poetry also writes

novels? And the converse conditional probability?

(b) In the same writers’ association, 15% write songs, all of whom also

write poetry, and 80% of the songsters write love poetry. But none

of the novelists write love poetry. What is the probability that (i)

an arbitrary poet writes songs, (ii) an arbitrary songster writes

poetry, (iii) an arbitrary novelist writes love poetry, (iv) an arbitrary

novelist writing love poetry also writes songs, (v) an arbitrary

songster writes novels?

Solution: We use the obvious acronyms N, P, S, L, for those who write

novels, poetry, songs, and about love.

(a) p(NjP) ¼ p(N\P)/p(P) ¼ 0.1/0.3 ¼ 1/3; while p(PjN) ¼ p(P\N)/

p(N) ¼ 0.1/0.6 ¼ 1/6.

(b) (i) p(SjP) ¼ p(S\P)/p(P). But by hypothesis, S � P, i.e. S\P = S,

so p(SjP) ¼ p(S)/p(P) ¼ 0.15/0.3 ¼ 0.5.

(ii) p(PjS) ¼ p(P\S)/p(S) ¼ p(S)/p(S) ¼ 1.
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(iii) p(L\PjN) ¼ p(L\P\N)/p(N) ¼ p(�)/p(N) ¼ 0/p(N) ¼ 0.

(iv) p(SjL\P\N) is not defined since p(L\P\N) ¼ 0.

(v) p(NjS) ¼ p(N\ S)/p(S).

Unfortunately, the data given in the problem do not suffice to determine the value

of p(N\ S), so we cannot solve the problem fully. However, the data do give us an

upper bound on the value of p(N\ S). Since 15% of the association are songsters and

80% of these write love poetry, we know that at least 12% of the association are

songsters writing love poetry. Since none of the love poets are novelists, at least 12%

of the association are songster non-novelists. But only 15% of the association are

songsters in the first place, so at most 3% of the songsters are novelists, i.e.

p(N\ S) � 0.03. So p(NjS) ¼ p(N\ S)/p(S) � 0.03/0.15 � 0.2.

Comment: In real life, situations like that in the last part of the exercise are quite

common: the available data does not suffice to determine a precise probability,

but may be enough to put non-trivial lower and/or upper bounds on it.

When calculating or proving with conditional probabilities it is easy to forget

the fact that they are only partial functions and proceed as if they are full ones. In

other words, it is easy to neglect the fact that p(AjB) is not defined in the limiting

case that p(B) ¼ 0. This can lead to serious errors. At the same time, it is quite

distracting to have to check out these limiting cases while trying to solve the

problem { you can easily lose the thread of what you are doing. How can these

competing demands of rigour and insight be met?

The best procedure is to run with the fox and bay with the hounds. Make a

first draft of your calculation or proof without worrying much about the limiting

case, i.e. as if conditional probability was always defined. When finished, go back

and check each step to see that it is really correct, if needed adding a side-

argument (usually quite trivial) to cover the limiting case. Usually, everything

should go smoothly. But sometimes there may be surprises!

EXERCISE 6.4.4 (WITH PARTIAL SOLUTION)

Let p: S! [0,1] be a probability function and suppose that p(B) 6¼ 0. Show

the following.

(a) p(A1[A2jB)¼ p(A1jB)þ p(A2jB) whenever the sets A1\B, A2\B are

disjoint.

(b) p({AjB) ¼ 1�p(AjB).

(c) If p(A) � p(B) then p(AjB) � p(BjA).

(d) p(AjB)/p(BjA) ¼ p(B)/p(A), assuming that also P(A)/P(B) 6¼ 0.
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Solution to (a{c):

(a) Suppose A1\B, A2\B are disjoint. Then:

p(A1[A2jB) ¼ p((A1[A2)\B))/p(B) by definition of conditional

probability

¼ p((A1\B)[(A2\B))/p(B) by Boolean distribution in

numerator

¼ (p(A1\B) þ p(A2\B))/p(B) using disjointedness

assumption

¼ p(A1\B)/p(B) þ p(A2\B)/p(B) by arithmetic

¼ p(A1jB) þ p(A2jB) by definition of conditional

probability

(b)p({AjB) ¼ p({A\B)/p(B) by definition of conditional probability

¼ (p({A\B) þ p(A\B) � p(A\B))/p(B) by arithmetic

¼ (p({A\B)[(A\B)) � p(A\B))/p(B) by disjointedness

¼ (p(B)� p(A\B))/p(B) by Boolean equality B¼ ({A\B)[
(A\B)

¼ 1 � [p(A\B))/p(B)] by arithmetic

¼ 1�p(AjB) by definition of conditional probability.

(c) Suppose p(A) � p(B). Then p(AjB) = p(A\B)/p(B) � p(A\B)/

p(A) = p(BjA), using the supposition p(A) � p(B) and initial hypothesis

p(B) 6¼ 0 to ensure that all terms are well-defined and to get the middle�.

Alice Box: What is AjB?

Alice: I understand the definitions and can do the exercises. But there is a

question bothering me. What is AjB? The definition of conditional probability

tells me how to calculate p(AjB), but it does not say what AjB itself is. Is it a

subset of the sample space S like A,B, or some new kind of ‘conditional object’?

Hatter: Neither one nor the other! Don’t be misled by notation: AjB is just

a traditional shorthand way for writing the ordered pair (A,B). The

vertical stroke is there merely to remind you that there is a division in

the definition. Conditional probability is thus a partial two-place function,

not a one-place function. A notation uniform with the rest of mathematics

would be simply p(A,B). The expression AjB does not stand for a subset of the

sample set S. It is an evocative but potentially misleading way of referring to the

ordered pair (A,B).

(Continued)
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Alice Box: (Continued)

Alice: Does an expression like p(Aj(BjC)) or p((AjB)jC) mean anything?

Hatter: Nothing whatsoever! Try to unpack the second one, say, according to the

definition of conditional probability. We should have p((AjB)jC) =

p((AjB)\C)/p(C). The denominator is OK, but the numerator is meaningless,

for p(X\C) is defined only when X is a subset of the sample set S, and AjB doesn’t

fit the bill.

Alice: So the operation of conditionalization can’t be iterated?

Hatter: Not so fast! We can iterate conditionalization, but not like that! Back

to the text to explain how.

As we have emphasized, a probability function p: P(S) ! [0,1] over a sample

space S has only one argument, while its associated conditional probability function

has two; it is a partial two-place function with domain P(S) � fX� S: p(X) 6¼ 0g.
But like all two-place functions, full or partial, a conditional probability function

can be transformed into a family of one-place functions by the operation of projection

(Section 3.5) on left or right argument, and in this case the interesting projections are

on the right. For every probability function p: S! [0,1] and every B� S with p(B) 6¼
0 we have the one-place function pB defined by putting pB(A)¼ p(AjB)¼ p(A\B)/

p(B) for all A� S. The reason why these projections are of interest is that each such

function pB : S! [0,1] is also a probability function over the same sample space S, as

is easily verified. It is called the conditionalization of p on B.

Since the conditionalization of a probability function is also a probability

function, there is a perfectly good sense in which the operation of conditionaliza-

tion may be iterated. Although Alice’s expressions p(Aj(BjC)) and p((AjB)jC) are

meaningless, the functions (pB)C and (pC)B are well-defined when p(B\C) 6¼ 0.

Moreover, it is not difficult to show that the order of conditionalization is

immaterial, and that every iterated conditionalization collapses into a suitable

one-shot conditionalization. Specifically: (pB)C ¼ pB\C ¼ pC\B ¼ (pC)B when all

these functions are well-defined, i.e. when p(B\C) 6¼ 0.

EXERCISE 6.4.5 (WITH PARTIAL SOLUTION)

Let p: S! [0,1] be a probability function. Show the following.

(a) p ¼ pS.

(b) If p(B) 6¼ 0, then pB(A1[A2) ¼ pB(A1) þ pB(A2) whenever the sets

A1\B, A2\B are disjoint.

170 6. Weighing the Odds: Probability



(c) If p(B) 6¼ 0, then pB({A) ¼ 1�pB(A).

(d) If p(B\C) 6¼ 0 then (pB)C ¼ pB\C ¼ pC\B ¼ (pC)B as claimed in the

text.

Solutions and hints for (a{c):

(a) By definition, pS (A) ¼ p(A\ S)/p(S) ¼ p(A)/1¼ p(A).

(b), (c) Use Exercise 6.4.4.

6.5 Interlude: Simpson’s Paradox

We pause for a moment to note a surprising fact known as Simpson’s paradox

(although it was in effect remarked as early as 1903 by Yule, and even earlier in

1899 by Pearson). It may be stated in terms of ratios or in terms of probabilities,

and it shows { just in case you hadn’t already noticed { that even elementary

discrete probability theory is full of traps for the unwary.

Suppose we have a sample space S, a partition of S into two cells F, {F and

another partition of S into two cells C, {C. To fix ideas, let S be the set of all

applicants for vacant jobs in a university in a given period. It is assumed that all

applicants are female or male (but not both) and that every applicant applies to

either computer science or mathematics (but not both). We write F, {F for the

female and non-female (i.e. male) applicants respectively; and C, {C are the

applicants to the departments of computer science and elsewhere (i.e. mathe-

matics). The four sets F\C, F\ {C, {F\C, {F\ {C form a partition of S (check

it). Now let H be the set of applicants actually hired. Suppose that:

pðHjF \ CÞ > P ðHj �F \ CÞ

i.e. the probability that an arbitrarily chosen female candidate to the computer
science department is hired, is greater than the probability that an arbitrarily
chosen male candidate to the computer science department is hired. Suppose that
the same inequality holds regarding the mathematics department, i.e. that

pðHjF \ �CÞ > P ðHj �F \ �CÞ:

Intuitively, it seems inevitable that the same inequality will hold when we take

unions on each side, i.e. that

pðHjF Þ > P ðHj �F Þ:
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But in fact it need not do so! We give a counter-example (based on a law suit

that was actually brought against a US university). Let S have 26 elements,

neatly partitioned into 13 female and 13 male. Eight women apply to computer

science, of which two are hired, while five men apply to the same department, of

which one is hired. At the same time, five women apply to mathematics, of which

four are hired, while eight men apply and six are hired. We calculate the

probabilities.

pðHjF \ CÞ ¼ pðH \ F \ CÞ=pðF \ CÞ ¼ 2=8 ¼ 0:25 while

pðHj �F \ CÞ ¼ pðH \ �F \ CÞ=pð�F \ CÞ ¼ 1=5 ¼ 0:2

so that the first inequality holds. Likewise

pðHjF \ �CÞ ¼ pðH \ F \ �CÞ=pðF \ �CÞ ¼ 4=5 ¼ 0:8 while

pðHj �F \ �CÞ ¼ pðH \ �F \ �CÞ=pð�F \ �CÞ ¼ 6=8 ¼ 0:75

and thus the second inequality also holds. But we have:

pðHjF Þ ¼ pðH \ F Þ=pðF Þ ¼ ð2þ 4Þ=13 ¼ 6=1350:5

pðHj �F Þ ¼ pðH \ �F Þ=pð�F Þ ¼ ð1þ 6Þ=13 ¼ 7=13 > 0:5

and so the third inequality fails { giving rise to the lawsuit!

Of course, the ‘paradox’ is not a paradox in the strict sense of the term: it is not

a contradiction arising from apparently unquestionable principles. It does not

shake the foundations of probability theory. But it shows that there can be

surprises even in elementary discrete probability, as also in the theory of com-

parative ratios on which it rests. Intuition is not always a reliable guide in matters

of probability, and even experts can go wrong.

6.6 Independence

There are two equivalent ways of defining the independence of two events. One

uses conditional probability, the other is in terms of multiplication. We begin with

the route via conditional probability.

Let p: P(S)! [0,1] be any probability function on a (finite) sample space S.

Let A,B be events (i.e. subsets of S). We say that A is independent of B (modulo

p) iff p(A) ¼ p(AjB) (in the principal case) or (limiting case) p(B) ¼ 0. In other

words, iff conditionalizing on B makes no difference to the probability of A. In

the language of projections, iff p(A) ¼ pB(A) when pB is defined.
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Note again that this is just mathematics, and not a matter of the presence or

absence of causality. Remember too that independence is modulo the probability

function chosen: A may be independent of B with respect to one function p, but

not so with respect to another probability function p0.

The other definition, in terms of multiplication, is as follows: A is independent

of B iff p(A\B) ¼ p(A) �p(B). The two definitions are equivalent. Some people

find the definition in terms of conditional probabilities more intuitive, except for

its limiting case, which is a little annoying. But the definition in terms of multi-

plication is usually easier to work with, and we adopt it as our official definition. In

general, exercises should be solved using it.

EXERCISE 6.6.1 (WITH PARTIAL SOLUTION)

(a) Show the equivalence of the two definitions of independence.

(b) Show that the relation of independence is symmetric.

(c) Show that A is independent of B in each of the four limiting cases that

p(B) ¼ 0, p(B) ¼ 1, p(A) ¼ 0, p(A) ¼ 1.

(d) Show that if A,B are disjoint, A is independent of B only if p(A)¼ 0 or

p(B) ¼ 0.

Solution to (a): Suppose first that p(A\B)¼ p(A)�p(B) and p(B) 6¼ 0. Then

we may divide both sides by p(B), giving us p(A)¼ p(A\B)/p(B)¼p(AjB) as

desired.

Conversely, suppose either p(B) ¼ 0 or p(A) ¼ p(AjB). In the former

case p(A\B) ¼ 0 ¼ p(A) �p(B) as needed. In the latter case p(A) ¼ p(AjB)

¼ p(A\B)/p(B) so multiplying both sides by p(B) we have p(A\B) ¼
p(A) �p(B) and we are done.

One advantage of the multiplicative definition is that it generalizes elegantly

to the independence of any finite collection of events. Let A1,. . .,An (n� 1) be any

such collection. We say that they are independent iff for every m with 1 � m � n

we have: p(A1\ . . .\Am) ¼ p(A1) � . . . �p(Am). Equivalently, using a definition

that may at first glance seem circular, but is in fact recursive (see Chapter 4): iff

every proper non-empty subcollection of fA1,. . .Ang is independent and

p(A1\ . . .\An) ¼ p(A1) � . . . �p(An). It should be emphasized that the indepen-

dence of n events does not follow from their pairwise independence; a counter-

example will emerge in one of the exercises.
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When it holds, independence is a powerful tool for calculating probabil-

ities. We illustrate this with an example. Five percent of computers sold by a

store are defective. Today the store sold three computers. Assuming that

these three form a random sample, with also independence as regards

defects, what are (i) the probability that all of them are defective, (ii) the

probability that none of them have defects, (iii) the probability that at least

one is defective?

We are told that the probability p(Di) of defect for each computer ci (i � 3)

taken individually is 0.05, and that these probabilities are independent. So (i) the

probability p(D1\D2\D3) that all three are defective is (0.05)3 ¼ 0.000125.

(ii) The probability p(�Di) that a given computer is not defective is 0.95, so by

independence the probability p(�D1\�D2\�D3) that none are defective is

(0.95)3 ¼ 0.857375, considerable less than 0.95.

It remains to answer part (iii), the probability that at least one is defective. The

quickest way of doing this is by noticing that at least one is defective iff it is not the

case that none of them is defective. That is, D1[D2[D3¼ � (�D1\�D2\�D3) by

de Morgan. We already have p(�D1\�D2\�D3) ¼ (0.95)3 ¼ 0.857375, so

p(D1[D2[D3) ¼ 1�0.857375 ¼ 0.142625.

Alice Box: Looking closely at the example

Alice: You said ‘the quickest way’. Is there another one?

Hatter: Yes there is. Instead of de Morgan, we can use the fact that

p(D1[D2[D3)¼p(D1)þp(D2)þp(D3)�p(D1\D2)�p(D1\D3)�p(D2\D3)

þ p(D1\D2\D3). In the problem we are given the first three values, and can

obtain the remaining four by multiplication on the assumption of inde-

pendence. This is rather tedious with three events (and much more so

when for larger n), although it is quicker when there are only two, since

p(D1[D2) ¼ p(D1)þp(D2)�p(D1\D2). So in general, don’t use it when

there are more than two events to join; use the de Morgan approach

instead.

Alice: OK, but I think that there is a flaw in the de Morgan argument. In the

statement of the problem, it was given that the sets Di are independent. But if

we look closely at the calculation of p(�D1\�D2\�D3), we see that it

assumes that the complement sets �Di are independent.

Hatter: Flaw, no; but gap, yes! In fact, if the Di are independent, so are the

�Di. For the case n ¼ 2, that will be part of the next exercise.
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EXERCISE 6.6.2 (WITH PARTIAL SOLUTION)

(a) Show that the relation of independence between two events is not

reflexive, indeed, that it is ‘almost irreflexive’ in the sense that A is

independent of A only in a very limiting case. Specifically, A is inde-

pendent of A iff p(A) 2 f1,0g.

(b) Use the above and symmetry to show that the relation of independence

is not transitive.

(c) Show that the following four conditions are all equivalent (modulo any

given probability function):

A and B are independent

A and �B are independent

�A and B are independent

�A and �B are independent

Solution to (c): We begin by showing the equivalence of the first to the

second, and sketch the remainder. Suppose p(A\B) ¼ p(A)�p(B); we want

to show that p(A\�B)¼ p(A)�p(�B). Now p(A)¼ p(A\B)þ p(A\�B)¼
p(A)�p(B) þ p(A\�B) so p(A\�B) ¼ p(A) � p(A)�p(B) ¼ p(A) �
p(A)�(1�p(�B))¼ p(A)� (p(A)� p(A)�p(�B))¼ p(A)�p(�B) as desired.

Given this, we can get the equivalence of the first to the third by

symmetry and the established result. Then we get the equivalence of the

second to the fourth by the same means.

The usefulness of independence in making calculations should not, however,

blind us to the fact that in real life it holds only exceptionally, and should not be

assumed without good reason. Examples abound. In one from recent UK legal

history, an expert witness cited the accepted probability of an infant cot death in a

family, and obtained the probability of two successive such deaths by simply

squaring the figure. This is legitimate only if we can safely assume that the two

probabilities are independent, which is highly questionable. Nevertheless, even

when independence fails, it can sometimes be useful to consider it in a search for

lower or upper bounds for a probability.

EXERCISE 6.6.3

Two archers shoot at a target. The probability that A1 gets a bulls-eye

is 0.2, the probability that A2 gets a bulls-eye is 0.3. Assuming inde-

pendence, what is (i) the probability that they both get a bulls-eye?
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(ii) That neither gets a bulls-eye? (iii) Assuming also independence for

successive tries, that neither gets a bulls-eye in ten successive attempts

each?

6.7 Bayes’ Theorem

We have emphasised that conditional probability does not commute: in general,

p(AjB) 6¼ p(BjA). But there are situations in which we can calculate the value of

one from the other, provided we are given some supplementary information. In

this section we see how this is done.

Assume that p(A), p(B) are non-zero. By definition, p(AjB) = p(A\B)/p(B),

so p(A\B) = p(AjB) �p(B). But likewise p(B\A) = p(BjA) �p(A). Since A\B =

B\A this gives us p(AjB) �p(B) = p(BjA) �p(A) and so finally:

pðAjBÞ ¼ pðBjAÞ � pðAÞ=pðBÞ:

Thus we can calculate the conditional probability in one direction if we know

it in the other direction and also know the two unconditional (also known as prior,

or base rate) probabilities.

We can go further. Since p(B) = p(BjA) �p(A) þ p(Bj�A) �p(�A) { see the

exercise below { we can substitute in the denominator to get the following

equation, which is a special case of what is known as Bayes’ theorem:

Assuming that pðAÞ; pðBÞ are non-zero, so pðAjBÞ and pðBjAÞ are well-

defined; pðAjBÞ ¼ pðBjAÞ � pðAÞ=pðBjAÞ � pðAÞ þ pðBj � AÞ � pð�AÞ:

So we can calculate the probability of p(AjB) provided we know both of the

conditional probabilities p(BjA) and p(Bj�A) in the reverse direction, and the

unconditional probability p(A) (from which we can of course get p(�A)).

The equation is named after the eighteenth century clergyman-mathematician

who first noted it, and it is surprisingly useful. For it can often happen that we have

no information permitting us to determine p(AjB) directly, but do have statistical

information, i.e. records of frequencies, that permit us to give figures for p(BjA)

and for p(Bj�A), together with some kind of estimate of p(A). With that informa-

tion, Bayes’ theorem tells us how to calculate p(AjB).

EXERCISE 6.7.1

Verify the claim made in the text above, that p(B) = p(BjA) �p(A) þ
p(Bj�A) �p(�A). Hint: Use the fact that B ¼ (B\A)[(B\ -A).
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Warning: Applications of Bayes’ theorem can be controversial. The figures

coming out of the calculation are no better than those going into it { as the saying

goes, garbage in, garbage out. In practice, it often happens that we have good

statistics for estimating p(BjA), perhaps less reliable ones for p(Bj�A), and only

vague theoretical reasons for guessing approximately at p(A). A good critical

sense is needed to avoid being led into fantasy.

Indeed, probability theorists and statisticians tend to be divided into what

are called Bayesians and their opponents. The difference is one of attitude or

philosophy rather than mathematics. Bayesians tend to be happy with applying

Bayes’ theorem to get a value for p(AjB) even in contexts where available

statistics give us no serious indication of the value of the ‘prior’ p(A). They

are willing to rely on non-statistical reasons for its estimation or confident that

possible errors deriving from this source can, by sophisticated techniques, be

taken into account and even ‘washed out’ of the system. Their opponents tend to

be much more cautious, unwilling to assume a probability that does not have a

serious statistical backing. As one would expect, subjectivists tend to be Baye-

sian, while frequentists do not.

It is beyond the scope of this book to enter into the debate, although the reader

can presumably guess where the author’s sympathies lie. And it should be

remembered that whatever position one takes in the debate on applications,

Bayes’ theorem as a mathematical result, stated above, remains a provable fact.

EXERCISE 6.7.2 (WITH SOLUTION)

At any one time, approximately 15% of patients in a ward suffer from the

HIV virus. Further, of those that have the virus, about 90% react positively

on a certain test, whereas only 3% of those lacking the virus react positively.

(i) Find the probability that a patient has the virus given that the test result

is positive. (ii) What would that probability be if 60% of the patients in the

ward suffered from the HIV virus, the other data remaining unchanged?

Solution: First, we translate the data and goal into mathematical language.

The sample set S is the set of all patients in the ward. Write V for the set of

those with the HIV virus and P for the set of those who react positive. We are

given the probabilities p(V) ¼ 0.15, p(PjV) = 0.9, p(Pj�V) = 0.03. For (i) we

are asked to find the value of p(VjP). Bayes’ theorem tells us that p(VjP)

= p(PjV) �p(V)/p(PjV) �p(V) þ p(Pj�V) �p(�V). The rest is calcula-

tion: p(VjP) = 0.9 �0.15/(0.9 �0.15 þ 0.03 �0.85) = 0.841 to the first

three decimal places. For (ii) we are given p(V) ¼ 0.6 with the other

data unchanged, so this time p(VjP) = 0.9 �0.6/(0.9 �0.6 þ 0.03 �0.4)

= 0.978 to the first three decimal places.
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Comment: Notice how the solution depends on the value of the uncondi-

tional probability (alias base rate, or prior) p(V). Other things being equal,

a higher prior gives a higher posterior probability: as p(V) moved from 0.15

to 0.6, p(VjP) moved from 0.841 to 0.948.

Bayes’ theorem can be generalized. Clearly, the pair A,�A gives us a two-cell

partition of the sample space S (complement being taken as relative to that

space), and it is natural to consider more generally any partition into n cells

A1,. . .,An. Essentially the same argument as in the two-cell case then gives us the

following general version of Bayes’ theorem. It should be committed to memory:

Consider any event B and partition fA1,. . .,Ang of the sample space, all

with non-zero probability. Then for each i � n we have:

pðAijBÞ ¼ pðBjAiÞ � pðAiÞ=
X

j�n½pðBjAjÞ � pðAjÞ�:

EXERCISE 6.7.3

A telephone helpline has three operators, Alfred, Betty, Clarice. They

receive 33, 37, 30 percent of the calls respectively. They manage to solve

the problems of 60, 70, 90 percent of their respective calls. What is the

probability that a successfully handled problem was dealt with by Alfred,

Betty, Claire respectively? Hint: First translate into mathematical lan-

guage and then use Bayes’ theorem with n ¼ 3.

6.8 Random Variables and Expected Values

In this section we explain the notion traditionally called a ‘random variable’, also

known as a payoff function, and its expected value given a probability function.

We then define the important structural concept of an induced probability

function, and use it to see expected values from another angle.

6.8.1 Random Variables

Let p: S ! [0,1] be any probability distribution on a (finite) sample space S.

Suppose that we have another function f giving some kind of magnitude or value,

positive or negative, for each of the elements of S. For example, S may consist of

runners in a horse-race, and f may give the amount of money that that will be won
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or lost, under some array of bets, when a given horse wins. Or S could consist of the

outcomes of throwing a die twice, with f specifying say the sum of the numbers

appearing in the two throws. All we need to assume about f is that f: S !
R, i.e. that it is on S and into the reals. In probability theory, such a

function f: S ! R is traditionally called a random variable; in decision

theory it is often called a payoff function.

Alice Box: Random? variable?

Alice: That’s a very strange term, ‘random variable’. In the language that we

have been learning, a variable is something syntactic { a letter ranging over a

domain. And in the first part of this chapter, when we spoke of a random

element of a set we meant one serving as argument of an equiprobability

distribution. This is neither! So why use the term?

Hatter: The language of probability, like that of counting, goes back beyond

the era of modern set theory. It persists { some would say stubbornly { to this

day. Table 6.1 at the beginning of this chapter gives a translation key from

modern into traditional language. In particular:

l Functions f: S!R are traditionally called random variables, and written X.

l The image f(S) of a random variable is called its range space, written RX.

l The composition function p8f
�1is called the distribution of the random

variable X.

l The probability p8f
�1(x) i.e. p(fs 2 S: f(s) ¼ xg) is written p(X ¼ x).

Alice: Do I have to remember this?

Hatter: Well, you should at least keep it handy for reference. Life would be easier

if everyone were to make use of the terminology and notation of the language of

sets and functions. But most books on probability theory { even most introduc-

tory sketches intended for students of computer science { are still expressed in the

traditional manner. So if you want to read such books, you have to learn the

language.

6.8.2 Expectation

Is there any way in which we can bring a probability distribution p: S! [0,1] and

a payoff function (alias random variable) f: S!R to work together? The natural

idea is to weigh one by the other. A low payoff with a high probability may be as
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desirable than a large payoff with small probability. Thus we may consider the

probability-weighted payoff function (equivalently, payoff-weighted probability

distribution) to be the function f�p: S!R defined by putting (f�p)(s)¼ f(s) �p(s).

Note that in the expression f �p, the dot does not stand for composition; it is a two-

place operation on functions with numbers as values, known as point-wise

multiplication.

Example: Suppose that S consists of the horses in a race, p(s) is the probability

that horse s will win (as determined from, say, its track record) and f(s) is the

amount that you stand to gain or lose from your bets if s wins. Then f(s) �p(s) is

that gain or loss weighted by its probability.

This in turn leads naturally to the concept of expected value or, more

briefly, expectation. It is a probability-weighted average. We introduce it

through an example of a three-horse race. Let S ¼ fa,b,cg be the runners,

with probabilities p(a) ¼ 0.1, p(b) ¼ 0.3, p(c) ¼ 0.6. Suppose the payoff

function puts f(a) ¼ 12, f(b) ¼ �1, f(c) ¼ �1. Then the expectation of f

given p is the sum f(a) �p(a) þ f(b) �p(b) þ f(c) �p(c) ¼ 12(0.1)�1(0.3)�1(0.6)

¼ 0.3.

In general terms, given a probability distribution p: S ! [0,1] and a payoff

function (alias random variable) f: S!R, we define the expectation of f given p,

written �(f,p) or just �, by the equation � ¼ �(f,p) ¼ �s2Sff(s) �p(s)g.

EXERCISE 6.8.1

(a) In the example given, compare the expectation of f given p with the

arithmetic mean (alias average) of values of f, calculated (without

reference to probability) by the usual formula mean(f) ¼ �s2Sff(s)g/
#(S). Explain the basic reason for the difference.

(b) Show that in the special case that p: S ! [0,1] is an equiprobable

distribution expectation equals mean.

When the expectation of a gamble comes out negative, then it is not a

good bet to make { one is likely to lose money. When it is positive, it is

favourable.

Alice Box: A good bet?

Alice: So in our horse-race example, where � ¼ 0.3, it is a good bet to make?

Hatter: Well, yes.

(Continued)
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Alice Box: (Continued)

Alice: But if I bet only once, then there only two possibilities: either I win or

I lose. The probability of winning is low (0.1), while the probability of losing

is high (0.9). So, even though the payoff on winning is high ($12) and on

losing is low ($�1), I am much more likely to lose than to win. Not very

attractive!

Hatter: If you bet only once, yes. But if you make the same bet many times,

then it becomes highly probable that the outcome is close to the expected

value. We have not shown that here, but it can be proven. In that case the bet

becomes attractive.

Alice: Provided I have enough capital to be able to put up with some probable

initial losses, without undue hardship. . .

Hatter: Very true! What this illustrates is that the mathematics of probability

theory is one thing, its application another. The former is relatively straight-

forward, the latter can be tricky.

6.8.3 Induced Probability Distributions

So far, we have been looking at things from the point of view of the sample space S.

But it is also useful to consider them from the point of view of its image f(S) under

the payoff function. This is particularly so when f(S) is smaller than S, which can

happen when f is not injective.

We will generalize a little, considering any function f: S ! U on the sample

space S into an arbitrary set U. Typically U will be the set R of reals, and thus f

will be a payoff function (alias random variable), but the definition that we are

about to give makes sense for any choice of U.

There is a natural way in which f: S! U and p: P(S)! [0,1] work together to

determine an induced probability distribution on the range f(S)�U into [0,1]. For

each u 2 f(S), we take the inverse image f�1(fug)¼ fs 2 S: f(s)¼ ug of U, and then

apply the probability function to that. In other words, we consider the function

p8f
�1on f(S) into the real interval [0,1] defined by the equation: p8f

�1(u)¼ p(fs 2
S: f(s) ¼ ug).

The function p8f
�1: f(S)! [0,1] is thus the composition of the inverse of f with

the probability function p. We are abusing notation just a little here. As we saw in

the chapter on functions, the inverse of a function f: S! U is a relation from f(S)

back to S, but will not be a function into S unless f is injective. However, if we rise

one level of abstraction and regard the value of f�1, for a given u 2 f(S)�U, to be
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the set of all s 2 S such that f(s)¼ u, then this is always a function on f(S) into

the power set P(S) of S, and we may as well write as it briefly with the same

notation f�1: f(S) ! P(S). The following diagram may help visualise what is

going on.

f

p

p f −1

[0, 1]

U

f −1

( )S

p+ (alias    )p

( )f S

S

Figure 6.1 Induced probability distribution.

The interesting thing is that p8f
�1: f(S)! [0,1] turns out itself to be a probability

distribution, but this time on f(S)�U rather than on S. We call it the distribution

on f(S) induced from p by f or, for brevity, simply the induced distribution. In turn,

it thus determines a probability function on P(f(S)) into [0,1], which we also call

p8f
�1.

EXERCISE 6.8.2

(a) If we identify the elements of S with their singletons, then Figure 6.1

may be simplified by treating S as a subset of P(S). Draw the diagram in

this way, taking care to distinguish full from dotted arrows and to place

correctly the beginning and end of each arrow. Keep a clean copy for

reference.

(b) Verify that, as claimed, p8f
�1 is a probability distribution on f(S).
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6.8.4 Expectation Expressed Using Induced Probability
Functions

For any random variable f: S ! R, we defined its expectation (given a prob-

ability function p: S! [0,1]) by the equation �¼ �(f,p)¼ �s2Sff(s) �p(s)g. This

definition may be expressed equivalently in the language of induced probability

functions, giving a rather deeper view of what is going on: � ¼ �(f,p) ¼
�x2f(S)fp8f�1(x) �xg.

Example: We review the horse-race example from the viewpoint of induced

probability functions. Recall that S ¼ fa,b,cg, with probabilities p(a) ¼ 0.1,

p(b) ¼ 0.3, p(c) ¼ 0.6 and payoffs f(a) ¼ 12, f(b) ¼ �1, f(c) ¼ �1. In the table

below:

l The top row gives the elements of the range space f(S) ¼ f12, �1g. Note that

although the sample space S ¼ fa,b,cg has three elements, f(S) has only two

elements.

l The second row gives the resulting values of p8f
�1(x). We have f�1(12)¼ fag

so p8f
�1(12) ¼ p(a) ¼ 0.1, while f�1(�1) ¼ fb,cg so p8f

�1(�1) ¼
p(b)þp(c)¼ 0.9. Note that since p8f

�1 is a distribution on f(S), the
entries in the second row add to 1.

l The third row gives the resulting values of p8f
�1(x) �x. Their sum is 0.3,

which is the value of �(f,p).

Table 6.2 Calculating expected value in an example.

x 2 f(S) 12 �1

p8f
�1(x) 0.1 0.9

p8f
�1(x) �x 1.2 �0.9

Another example: We walk through another example, from the same point

of view. Consider a pair of fair dice about to be thrown. We want to determine the

expected value of the sum of the two outcomes. First, we need to specify the

sample space S: the 36 ordered pairs (a,b)2 f1,..,6g2. Next, we specify the random

variable (payoff function) f: S ! R: we put f(a,b) ¼ aþb. Hence its range f(S)

(alias RX) is the set f2,. . .,12g. In the following Table 6.3:

l The top row contains the elements of the range space f(S) ¼ f2,. . .,12g. Note

that although the sample space S has 36 elements, f(S) has only 11.

l The second row gives the resulting value of p8f
�1(x). Taking for instance

x¼ 6, f�1(x) has 5 elements (1,5), (2,4), (3,3), (4,2), (5,1) out of the total
of 36 in S. Since the distribution p is assumed to be equiprobable, each
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element of S gets the same probability 1/36, so for x¼ 6, p8f
�1(x)¼ 5/36.

Note that since p8f
�1 is a distribution on f(S), the entries in the second row

add up to 1.

l The bottom row gives the resulting values of p8f
�1(x) �x.

l In accordance with the formula for expectation, �(f,p) ¼ �x2f(S)fp8f�1(x) �xg
i.e. the sum of the figures in the bottom row, which is 7.

Table 6.3 Calculating expected value in a second example.

x2f(S) 2 3 4 5 6 7 8 9 10 11 12
p8f
�1(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

p8f
�1(x) �x 2/36 6/36 12/36 20/36 30/36 42/36 40/36 36/36 30/36 22/36 12/36

In this example, the value of � coincides with that of the ordinary mean of f(S),

calculated as �fx2f(S)g/11¼ 7, but this is exceptional. The two coincide because,

on the one hand p is an equiprobable distribution on S and, on the other hand, the

inverse f�1of the random variable f is symmetric around argument 7. Modify

either of these features, and the expectation will differ from the mean.

EXERCISE 6.8.3

Consider a fair coin to be thrown five times. Treating heads as 1 and tails as

0, we want to look at the sum of the five tosses. Specify the sample set S,

random variable f, and range space f(S), and draw up a table analogous to

that of the dice example above to determine the expected value.

In this chapter we have only scratched the surface of discrete probability

theory. For example, as well as expectation �, which expresses the idea of

weighted average, statisticians need measures of the dispersion of items around

the expectation point { the degree to which they bunch up around it or spread far

out on each side. The first steps in that direction are the concepts of variance and

standard distribution. We will not go further in this brief chapter { there are

pointers to reading below.

FURTHER EXERCISES

6.1. Finite probability spaces

(a) Consider a loaded die, such that the numbers 1{5 are equally likely to

appear, but 6 is twice as likely as any of the others. To what probability

distribution does this correspond?
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(b) Consider a loaded die in which the odd numbers are equally likely, the

even numbers are also equally likely, but are three times more likely

than the odd ones. What is the probability of getting a prime number?

(c) Consider a sample space S with n elements. How many probability dis-

tributionsare there on this space in which p(s)2f0,1g forall s2S? For such

a probability distribution, formulate a criterion for p(A)¼ 1, where A� S.

(d) Show by induction that when A1,. . .,An are pairwise disjoint, then

p(A1[. . .[An) ¼ p(A1)þ. . .þp(An).

6.2. Unconditional probabilities

(a) Consider the probability distribution in part (a) of the preceding

exercise. Suppose that you roll the die three times. What is the prob-

ability that you get at least one 6?

(b) You have a loaded die with probability distribution like that in part (a)

of the preceding exercise, and your friend has one with probability

distribution like that in part (b). You both roll. What is the probability

that you both get the same number?

(c) John has to take a multiple-choice examination. There are 10 ques-

tions, each to be answered ‘yes’ or ‘no’. Marks are counted simply by

the number of correct answers, and the pass mark is 5. Since he has not

studied at all, John decides to answer the questions randomly. What is

the probability that he passes?

(d) Mary is taking another multiple-choice examination, with a different

marking system. There are again 10 questions, each to be answered ‘yes’

or ‘no’, and the pass mark is again 5. But this time marks are counted by

taking the number of correct answers and subtracting the number of

incorrect ones. If a question is left unanswered, it is treated as incorrect.

If Mary answers at random, what is the probability that she passes?

6.3. Conditional Probability

(a) In a sports club, 70% of the members play football, 30% swim, and 20%

do both. What are (i) the probability that a randomly chosen member

plays football, given that he/she swims? (ii) the converse probability?

(b) Two archers Alice and Betty shoot an arrow at a target. From their past

records, we know that their probability of hitting the target are 1/4 and

1/5 respectively. We assume that their performances are independent of

each other. If we learn that exactly one of them hit the target, what is

the probability that it was Alice?
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(c) Show that, as claimed in the text, the conditionalization of any prob-

ability function is also a probability function whenever it is well-defined.

6.4. Independence

(a) A fair coin is tossed three times. Consider the events A, B, C that the

first toss gives tails, the second toss gives tails, and we get exactly two

tails in a row. Specify the sample space, and identify the three events by

enumerating their elements. Show that A and B are independent, and

likewise A and C are independent, but B and C are not independent.

(b) Use results established in the text to show that A is independent of B iff

p(AjB) ¼ p(Aj{B).

(c) Show that if A is independent of each of two disjoint sets B,C then it is

independent of B[C.

(d) Construct an example of a sample space S and three events A,B,C that

are pairwise independent but not jointly so.

6.5. Bayes’ theorem

(a) Suppose that the probability of a person getting flu is 0.3, that the prob-

ability of a person having been vaccinated against flu is 0.4, and that the

probability of a person getting flu given vaccination is 0.2. What is the

probability of a person being vaccinated given that the person has flu?

(b) At any one time, approximately 3% of drivers have a blood alcohol level

over the legal limit. About 98% of those over the limit react positively on

a breath test, but 7% of those not over the limit also react positively. Find

(i) the probability that a driver is over the limit given that the breath test

is positive; (ii) the probability that a driver is not over the limit given that

the breath test is negative; (iii) and (iv) the same results in a neighbour-

ing country where, unfortunately, 20% of drivers are over the limit.

6.6. Random variables and expected values

(a) Consider a box of 10 items, of which 4 are defective. A sample of three

items (order immaterial, without replacement, i.e. mode O�R� in the

notation of the chapter on counting) is drawn at random. What is the

probability that it has exactly one defective item? What is the expected

number of defective items?

(b) In a television contest, the guest is presented with four envelopes from

which to choose at random. They contain $1, $10, $100, $1,000 respec-

tively. What is the expected gain?
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(c) A loaded coin has p(H)¼ 1/4, p(T)¼ 3/4. It is tossed three times. Specify

the corresponding sample space S. Let f be the function (random variable)

on this sample space that gives the number of heads that appear. Specify

the range space f(S). Construct a table showing the induced probability

distribution on f(S). Calculate the expectation � ¼ �(f,p).

(d) Show the equivalence of the definition of expected value with its

characterization in terms of an induced probability function.

Selected Reading

Not many introductory texts of discrete mathematics say more than a few words

on probability. The following cover more or less the same ground as in this

chapter, but with mainly traditional terminology:

Ralph P. Grimaldi Discrete and Combinatorial Mathematics. Addison Wesley,

2004 (fifth edition), Chapter 3.4{3.8.

Seymour Lipschutz and Marc Lipson Discrete Mathematics. McGraw Hill

Schaum’s Outline Series, 1997 (second edition), Chapter 7.

Kenneth Rosen Discrete Mathematics and its Applications. McGraw Hill, 2007

(sixth edition), Chapter 6.

For those wishing to go further, the authors of the second text have also written:

Seymour Lipschutz and Marc Lipson Probability. McGraw Hill Schaum’s

Outline Series, 2000 (second edition).
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7
Squirrel Math: Trees

Chapter Outline

This chapter introduces a kind of structure that turns up everywhere in computer

science { trees. We will be learning to speak their language { how to talk about their

components, varieties and uses { more than proving things about them. The flavour

of the chapter is thus rather different from that of the preceding one on probability:

much more use of spatial intuition, rather less in the way of demonstration.

We begin by looking at trees in their most intuitive form { rooted (alias

directed) trees { first of all quite naked, and then clothed with labels and finally

ordered. Particular attention will be given to the case of binary trees and their use

in search procedures. We then turn to unrooted (or undirected) trees and their

application to span graphs. As always, we remain in the finite case.

7.1 My First Tree

Before defining the general concept, we give an example. Consider the structure

presented in Figure 7.1 below.

This structure is a rooted tree. It consists of a set T of fifteen elements a,. . .,o,

together with a relation over them. The relation is indicated by the arrows. The

elements of the set are called nodes, or vertices; the arrows representing pairs in

the relation are called links (alias arcs or edges). We note some features of the

structure.

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 7, � Springer-Verlag London Limited 2008
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l The relation is acyclic, and so in particular asymmetric and irreflexive (recall

these notions from the chapter on relations).

l There is a distinguished element a of the set, from which all others may be

reached by following paths in the direction of the arrows. In the language of sets,

all other elements are in the transitive closure of fag under the relation. This is

called the root of the tree, and it is unique.

l Paths may fork, continue, or stop. Thus from the node a we may pass to two

nodes b and c. These are called the children of a. While a has just two children,

d has three (i,j,k), and c has four (e,f,g,h). But b has only one (d), and m for

example has no children. Mixing biological with botanical metaphors, nodes

without children are called leaves. Any path from the root to a leaf is called a

branch of the tree. Note that a branch is an entire path from root to a leaf {

thus neither (b,d,i) nor (a,c,h) nor (a,b,k,n) is a branch of the tree in the

figure.

l Paths never meet once they have diverged: we never have two or more arrows

going to a node. In other words, each node has at most one parent. An immediate

consequence of this and irreflexivity is that the link relation is intransitive.

Given these features, it is clear that in our example in Figure 7.1 we can leave

the arrow-heads off the links, with the direction of the relation understood

implicitly from the layout.

a

b

ed

ji

m n

k

o

f

c

g h

l

Figure 7.1 Example of a rooted tree.
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EXERCISE 7.1.1 (WITH PARTIAL SOLUTION)

This exercise concerns the tree of Figure 7.1. It is intended to sharpen

intuitions before we give a formal definition of what a tree is.

(a) Identify all the leaves of the tree, and count them.

(b) Why are none of (b,d,i), (a,c,h), (a,b,k,n) branches of the tree?

(c) Identify all the branches of the tree and count them. Compare the

result with that for leaves, and comment.

(d) The link-length of a branch is understood to be the number of links

making it up. How does this relate to the number of nodes in the

branch? Find the link-length of each branch in the tree.

(e) Suppose you delete the node m and the link leading into it. Would the

resulting structure be a tree? What if you delete the node but leave the

link? And if you delete the link but not the node?

(f) Suppose you add a link from m to n. Would the resulting structure be a

tree? And if you add one from c to l ?

(g) Suppose you add a node p without any links. Would you have a tree? If you

add p with a link from b to p? And if you add p but with a link from p to b?

(h) Given the notions of parent and child in a tree, define those of sibling,

descendant and ancestor in the natural way. Identify the siblings,

descendants and ancestors of the node d in the tree.

Solutions to (a), (b), (e), (g):

(a) There are 8 leaves: m,j,n,o,e,f,g,l.

(b) Because the first does not reach a leaf, the second does not begin from

the root, the third omits node d from the path that goes from the root to

leaf n.

(e) If you delete node m and the arrow to it, the resulting structure is still a

tree. But if you delete either alone, it will not be a tree.

(g) In the first case no, because the new node p is not reachable by a path

from the root a; nor can it be considered a new root for the enlarged

structure, because no other node is reachable from it. But in the second

case, we would have a tree. In the third case we would not have a tree as

p would not be reachable from a; nor would p be a new root for the

enlarged structure, since a is not reachable from it.
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7.2 Rooted Trees

There are two ways of defining the concept of a rooted tree. One is explicit, giving a

necessary and sufficient condition for a structure to be a tree. The other is recursive,

defining first the smallest rooted tree and then larger ones out of smaller ones. As

usual, the recursive approach tends to be better for the computer, though not always

for the human. Each way gives its special insight, and problems are sometimes more

easily solved using one than another. We begin with the explicit approach.

For that, we need the notion of a directed graph or briefly digraph. This is

simply any pair (G,R) where G is a set and R is a two-place relation over G. A

rooted tree is a special kind of directed graph, but we can zoom in on it immedi-

ately, with no special knowledge of general graph theory. The only notion that we

need that is not already available from Chapter 2 is that of a path. We used the

notion informally in the preceding section, but we need a precise definition. If

(G,R) is a directed graph, then a path is defined to be any finite sequence a0,. . .,an

(n � 1) of elements of G (not necessarily distinct from each other) such that each

pair (ai,ai+1) 2 R.

Note that in the definition of a path we require that n� 1; thus we do not count

empty or singleton sequences as paths. Of course, they could also be counted if we

wished, but that would tend to complicate formulations down the line, where we

usually want to exclude the empty and singleton ones.

Note also that we do not require that all the ai are distinct; thus (b,b) is a path

when (b,b) 2R, and (a,b,a,b) is a path when both of (a,b),(b,a) 2R. Nevertheless,

it will follow from the definition of a tree that paths like these (loops and cycles)

never occur in trees.

Explicit definition of trees. A (finite) rooted tree is defined to be any finite

directed graph (G,R) with an a 2 G (called the root of the tree) such that (i) for

every x 2 G with a 6¼ x there is a unique path from a to x but (ii) there is no path

from a to a.

In addition, the empty tree (with both carrier set G and relation R empty) is

often regarded as a rooted tree { despite the fact that it does not contain a root!

This is evidently a limiting case, and is of little importance in the general theory,

so much so that it is often excluded. But when we come to the special case of

binary trees, it can facilitate recursive constructions.

When a graph (G,R) is a tree, we usually write its carrier set G as T, so that it

is called (T,R). In this section, for brevity we will sometimes say simply tree for

rooted tree; although when we get to unrooted trees towards the end of the

chapter we will have to be more explicit. It is easy to establish some further

properties of trees. Let (T,R) be any tree with root a (and so with T non-empty).

Then:
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l R is acyclic,

l a is the unique root of (T,R),

l a has no parent and every other element of G has just one parent,

l No two diverging paths ever meet.

We give informal proofs { all using proof by contradiction { and comment as

we go. The proofs of acyclicity and parent numbers bring out the importance of

the word ‘unique’ in the definition of a rooted tree.

l For acyclicity, recall from Chapter 2 that a relation R is said to be acyclic iff

there is no path from any element x to itself, i.e. no path x0,. . .,xn (n � 1) with

x0 = xn. Suppose that a tree fails acyclicity; we get a contradiction. By the

supposition, there is a path from some element x to itself. But by the definition

of a tree, there is also a unique path from the root a to x. Form the composite

path made up of the path from the root to x followed by the one from x to itself.

This is clearly another path from the root to x, and it must be distinct from

the first path because it is longer. This contradicts uniqueness of the path from

a to x.

l For uniqueness of the root, suppose for reductio ad absurdum that a and a 0 are

distinct elements of T such that for every x 2G, if a 6¼ x (resp. a 0 6¼ x) there is a

path from a to x (resp. from a 0 to x), but there is no path from a to a (resp. from

a 0 to a 0). From the first supposition there is a path from a to a 0, and by the

second there is a path from a 0 to a. Putting these two paths together gives us

one from a to a, giving us a contradiction.

l For the parent numbers, suppose that a has a parent x, so that (x,a) 2 R. Since

a is the root, there is a path from a to x. The composite path made up of this

followed by the link (x,a) thus gives us a path from a to a: contradiction. Now

let b be any element of T with b 6¼ a. By the definition of a tree there is a path

from the root a to b, and clearly its last link gives us a parent of b. Now suppose

that b has two distinct parents x and x 0. Then there are paths from the root a to

each of x and x 0, and compounding them with the additional links from x and x 0

to b gives us two distinct paths from a to b, contradicting the definition of a

tree.

l Finally, if two diverging paths ever meet, then the node where they meet would

have two distinct parents, contradicting the preceding property.

The link-height (alias level) of a node in a tree is defined recursively: that of the

root is 0, and that of each of the children of a node is one greater than that of the

node. The node-height of a node (alias just its height in many texts) is defined by
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the same recursion, except that the node-height of the root is set at 1. Thus for

every node x, node-height(x) = link-height(x) + 1. As trees are usually drawn

upside-down, the term ‘depth’ is often used instead of ‘height’. Depending on the

problem under consideration, either one of these two measures may be more

convenient to use than the other. The height (whether in terms of nodes or

links) of the tree itself may be defined to be the highest height (node/link

respectively) of any of its nodes.

These notions are closely related to that of the length of a path in a tree.

Formally, the link-length of a path x0,. . .,xn (n� 1) is n, its node-length is n+1. We

can say that the height of a node (in terms of nodes or links) equals to the length

(node/link respectively) of the unique path from the root to that node { except for

the case of the root node, where the latter does not exist).

EXERCISE 7.2.1 (WITH PARTIAL SOLUTION)

(a) What is the (link/node)-height of the tree Exercise 7.1.1? Consider a

set with n � 2 elements. What is the greatest possible (link/node)-

height of any tree over that set? And the least possible?

(b) For n = 4, draw rooted trees with n nodes, one tree for each possible

height.

(c) Show that the relation R of a rooted tree (T,R) is irreflexive and

asymmetric, as those terms are defined in the chapter on relations.

(d) In Section 4.5 we gave a table of calls that need to be made when

calculating F(8) where F is the Fibonacci function. Rewrite this table

as a tree, carrying its construction through to the elimination of all

occurrences of F.

Solutions to (a) and (c):

(a) The link-height of the tree in Exercise 7.1.1 is 4, its node-height is

5. Let n � 2. The greatest possible (link/node)-height is obtained

when the tree consists of a single branch, i.e. is a sequence of

nodes. The node-length of such a branch is n, and its link-length

is n{1. The least possible measure is obtained when the tree

consists of the root with n{1 children; the link-length is then 1

and its node-length is 2.

(c) Irreflexivity and asymmetry both follow immediately from acyclicity

(already established in the text) taking the cases n = 1 and n = 2.
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First recursive definition. We pass now to the recursive definition of a

rooted tree. There are two main ways of doing this: the recursion step can bring

in a new root, or a new leaf. The most common presentation makes a new root,

andwegive it first. In this context, it is convenient to make the root explicit in the

notation; thus a rooted tree is thought of as a triple (T,a,R) where a is the root.

l The basis of the definition stipulates that any singleton is a tree, with its

element as root and with the empty relation for links. In other words, for

any a, the triple (fag,a, ˘) is a rooted tree. In addition, if desired, the

empty structure may be regarded as a rooted tree (but without a root).

l The recursion step tells us that whenever we have a finite collection of

disjoint trees and a fresh item a, then we can form a new tree by taking a to

be its root, linked to the roots of the given trees. Formally: Suppose

(Ti,ai,Ri) (i � n) are trees with roots ai. Suppose that the Ti are pairwise

disjoint and a =2 [fTigi�n. Then the structure ([fTi[faggi�n, a,

[fRi[f(a,ai)gi�ng is a tree with root a.

Note the conditions that the Ti must be disjoint and that a must be

fresh. The recursion step may be illustrated by the following diagram.

Here the Ti are represented schematically by triangles. They are the

immediate (proper) subtrees of the entire tree. They in turn may contain

more than a single node, and so have further subtrees, which will also be

subtrees of the whole.

In general, when (T,a,R) is any rooted tree with root a, then its subtrees

are the structures (Tb,b,Rb) where b 2 T, Tb is the closure of fbg under the

link relation R, and Rb is the restriction of R to Tb. Evidently, b is the root of

the subtree. As a limiting case, the empty tree may also be counted as a

subtree.

.  .  .  .  .

a

T1 T2 Tn
...

Figure 7.2 Recursive definition of a tree.
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EXERCISE 7.2.2 (WITH PARTIAL SOLUTION)

(a) Use the above recursive definition of a tree to construct five trees of

respective link-heights 0,1,2,3,4, each one obtained from its predecessor

by an application of the recursion step.

(b) How many rooted subtrees does a non-empty rooted tree with n � 1

nodes have?

Solution to (b): Clearly there are a one-one correspondence between the

nodes and the non-empty subtrees with them as roots. This includes the

given tree, which is a subtree of itself. Thus there are n non-empty rooted

subtrees. Hence there n+1 rooted subtrees including the empty one; n proper

rooted subtrees including the empty one; and n{1 non-empty rooted proper

subtrees.

We could also define rooted trees recursively by making fresh leaves. The

basis, for the singleton tree, remains the same. The recursion step stipulates:

Whenever we have a tree and a fresh item x, then we can form a new tree by

linking any given node b of the old tree to x; the root of the new tree is the same as

that of the old one. More formally: Suppose (T,a,R) is a rooted tree with root a,

and let b 2T and x =2T. Then the structure (T[fxg, a, [fR[(b,x)gis a rooted tree

with the same root a.

Note that the new element x will be a leaf of the new tree; the node b may or

may not have been a leaf of the old tree, but will not be a leaf of the new one. Non-

leaves are often called interior nodes.

This recursive definition corresponds most closely to your thoughts and pencil

strokes when you draw a tree on the page: you will usually start by placing a root,

which remains so throughout the construction, adding new nodes by lengthening

a branch (thus converting a leaf into an interior node) or dividing a branch. But

the other recursive definition by ‘new root’ is the one most popular in computer

science texts, as it lends itself most easily to large-scale computation.

EXERCISE 7.2.3

(a) Take the last tree that you constructed in the preceding exercise, and

reconstruct it step by step using the ‘new leaf’ recursion.

(b) Use the ‘new leaf’ recursive definition to show that any tree with n � 1

nodes has n{1 links.

(c) Show the same directly from our explicit definition of a rooted tree and

the properties that we established for it.
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The three definitions of a rooted tree { explicit, recursive by ‘new root’

and recursive by ‘new leaf’ { are equivalent, but we will not prove that here,

leaving it as a challenging problem at the end of the chapter.

What are some typical examples of trees in everyday life? The first that

springs to mind may your family tree, but be careful! On the one hand,

people have two parents, not one; and diverging branches of descendants can

meet (legally as well as biologically) when cousins or more distant relations

have children together. But if we make a family tree consisting of the male

line only (or the female line only) of descendants of a given patriarch (resp.

matriarch), then we do get a tree in the mathematical sense.

The most familiar example of a tree in today’s world is given by the

structure of folders and files that are available (or can be created) on your

computer. Usually, these are constrained so as to form a tree. For those working

as employees in an office, another familiar example of a tree is the staff

organigram, in which the nodes are staff members (or rather, their functions)

and the links indicate the immediate subordinates of each node in the hierar-

chy. In a well-constructed pattern of responsibilities, this will usually be a tree.

Trees also arise naturally whenever we investigate grammatical structure. In

natural languages such as English, this reveals itself when we parse a sentence; in

formal languages of computer science, mathematics and logic, parsing trees arise

when we consider the syntactic structure of a formal expression.

Trees also arise in logic in other ways: a proof can be represented as a tree,

with the conclusion as root and the assumptions as leaves. And one popular

way for checking whether a formula of propositional logic is a tautology

proceeds by constructing what is called its semantic decomposition tree.

We will give some examples of parsing trees shortly. Proof trees and

semantic decomposition trees will be described in later chapters on logic.

But first we should introduce some refinements into our theory, with the

notions of labelled and ordered trees.

Alice Box: Which way up?

Alice: Before going on, why do you draw trees upside down, with the root at the

top, as in Figure 7.1?

Hatter: Just convention.

Alice: Is that all?

Hatter: Well, that’s the short answer, but not the whole story. The orientation also

depends on how we are constructing the tree. If we are thinking of it as constructed

(Continued)
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Alice Box: (Continued)

from the root to the leaves by a ‘new leaf’ recursion, then it is natural to write the

root at the top of the page and construct downwards. As that is what humans most

commonly do in small examples, diagrams are usually drawn with the root on top.

Alice: So when would we draw it the other way round?

Hatter: If we are considering the tree as built by a ‘new root’ recursion, so that we

are proceeding from leaves to root, then it makes sense to put the leaves at the top

of the page and work down to the root. For example, in logic texts, formal proofs

are often represented by trees with the leaves (assumptions) at the top and the

root (conclusion) below, while semantic decomposition trees are upside-down.

Alice: So it’s a matter of convenience?

Hatter: Yes. The upside-down orientation is convenient when you are con-

structing the tree from root to leaves, but the right-way-up is natural when

building from leaves to root.

7.3 Labelled Trees

In practice, we rarely work with naked trees. They are almost always clothed or

decorated in some way { in the technical jargon labelled. Indeed, in many applica-

tions, the identity of the nodes themselves is of little or no importance; they are

thought of as just ‘points’; what is important are the labels attached to them.

A labelled tree is a tree (T,R) accompanied by a function l: T! L (l and L for

‘label’). L can be any set, and the function l can also be partial, i.e. defined on a

subset of T. Given a node x, l(x) indicates some object or property that is placed

at that point in the tree. Thus, heuristically, the nodes are thought of as hooks on

which to hang labels. We know that the hooks are there, and that they are all

distinct from each other, but what really interests us are the labels. In a diagram,

we write the labels next to the nodes, and may even omit to give names to the

nodes, leaving them as dots on the page.

It is important to remember that the labelling function need not be injective,

and typically it will not be. For example, in a tree of folders and files in your

computer, we may put labels indicating the number of subfolders immediately

under them, or date of creation or of last modification. Different folders may thus

have the same labels.

A given tree may come with several parallel systems for labelling its nodes.

These could, of course, be amalgamated into one complex labelling function whose

labels are ordered n-tuples of the component labels; but this is not always of any
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advantage. It is also sometimes useful to label the links rather than (or in addition

to) the nodes. For example, we might want to represent some kind of distance, or

cost of passage, between a parent and its children. Sometimes the location of the

labels, on nodes or on links, is just a matter of convention and convenience.

Remember that trees are tools for use, more than objects for study, and we have

considerable freedom in adapting them to the needs of the task in hand.

An ordered tree is a tree in which the children of any node are put into a linear

order and labelled with numbers 1,...,n to record the ordering. In this case the labelling

function is a partial function on the tree (the root is not in its domain) into the positive

integers. Alternatively, the labels could be put on the links, in which case it is a total

function. In the important case of a binary tree (which we will consider in detail

shortly) each node has at most two children; these are put in order and labelled 1,2 or,

more commonly, ‘left’ and ‘right’. We give two examples of labelled, ordered trees.

Example 1. Consider the arithmetic expression (5+(2�x)){((y{3)+(2+x)). Evi-

dently, it is formed from two sub-expressions, 5+(2�x) and (y{3)+(2+x) by apply-

ing the operation of subtraction. As this operation is not commutative, the order of

application is important. We may represent the syntactic structure of the expression

by a labelled tree, whose root is the whole expression, which has just two children,

labelled by the two immediate sub-expressions. Continuing this process until

decomposition is no longer possible, we get the following labelled, ordered tree.

Alice Box: Drawing trees

Alice: Why do we have to regard the expressions written alongside the nodes as

labels? Why not just take them to be the names of the nodes?

Hatter: Because the labelling function need not be injective. In our example, we

have two different nodes labelled by the numeral 2. We also have two different nodes

(Continued)

(5 + (2 × x)) – ((y – 3) + (2 + x))

5 + (2 × x) (y – 3) + (2 + x)

5 2 × x y − 3 2 + x

2 x y 3 2 x

Figure 7.3 Tree for syntactic structure of an arithmetic expression.
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Alice Box: (Continued)

labelled by the variable x. They have to be distinguished because they have

different roles in the expression and so different places in the tree

Alice: I see. But that leads me to another question. Where, in the figure, are

the names of the nodes?

Hatter: We have not given them names. In the diagram they are simply

represented by dots. To avoid clutter, we name them only if we really need to.

Alice: OK. One more question. As you said, in this expression order is impor-

tant. That means that the children of each node must be given ordering labels,

say ‘left’ and ‘right’. Where are they?

Hatter: We let the sheet of paper take care of that. In other words, when we

draw a diagram for an ordered tree, we follow the convention of writing the

children in the required order from left to right on the paper. This is another

way of reducing clutter.

Alice: So this tree is different from its mirror image, in which left and right are

reversed on the page?

Hatter: Yes, since it is an ordered tree. If it were an unordered tree, they would

be the same.

Actually, the tree in Figure 7.3 can be written more economically. The interior

nodes need not be labelled with entire sub-expressions; we can just write their

principal operations. This gives us the diagram in Figure 7.4. It does not lose informa-

tion, for we know that the operation acts on the two children in the order given.

Syntactic decomposition trees such as that of Figure 7.3 are important for

evaluating an expression, whether by hand or by computer. Suppose the variables

−

+

5 ×

2 x y 3 2 x

−

+

+

Figure 7.4 Syntactic structure with economical labels.
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x and y are instantiated to 4 and 7 respectively. The most basic way of evaluating

the expression as a whole is by ‘climbing’ the tree from leaves to root, always

evaluating the children of a node before evaluating that node.

The tree in Figure 7.3 has a number of special structural properties, which are

of considerable importance.

l Each node has at most two children. Such trees are called 2-trees. In general,

when each node of a tree has at most n children, it is called an n-tree.

l The tree is ordered in the sense defined above: the children of any given node

are understood as having an order, expressed with labels or by a reading

convention. An ordered 2-tree is called a binary tree. We will look at binary

trees more closely in the next section.

l In fact, each node of the tree has either two children (in the case of the interior

nodes) or no children (the leaves), so that no node has just one child. A binary

tree with this property is sometimes called a complete binary tree.

l Note, however, that although the tree is complete in the sense defined, not all

branches are of the same length.

Warning: Here as in so many parts of finite mathematics, terminology is

protean. When reading any text, check exactly what it means by any of the

above terms.

EXERCISE 7.3.1 (WITH PARTIAL ANSWER)

(a) Evaluate the expression labelling the root of Figure 7.3, for the values 4,7 for

x,y respectively, by writing the values in the diagram alongside the labels.

(b) Is the sequence of steps that you made in the valuation uniquely

determined, or could you also do it with a different sequence?

(c) Draw an example of a binary tree that is not a complete binary tree.

Answer to (b):

(b) Not quite uniquely determined. Although we must evaluate children before

their parent, we can evaluate the children themselves in arbitrary order.

Example 2. Syntactic decomposition trees arise not only for arithmetic expres-

sions, but for any kind of ‘algebraic’ expression in mathematics or logic. Take for

example the formula of propositional logic (p!:q)!(:r$(s^:p)). Clearly, the

structure of this expression can be represented by a syntactic decomposition

tree.
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EXERCISE 7.3.2 (WITH PARTIAL SOLUTION)

(a) Draw the syntactic decomposition tree for the formula of Example 2,

once with full labelling and again with abbreviated labelling.

(b) Is it a 2-tree? A 2-tree? Is it a complete 2-tree? What are its node and

link heights?

(c) Evaluate the formula for the values p := 1, q := 1, r := 0, s := 0, writing

the values as additional labels next to the nodes on the tree. Reminder:

You will need to use the truth tables given in logic boxes in Chapter 1.

Solution to (b): This is certainly a binary tree, since each node has at most

two children. But to be annoyingly strict, whether it is a binary tree

depends on how you drew it. For the two-place connectives !, $, ^ you

branched left and right, and this can be read as an ordering convention. But

what did you do with :? If the single link went straight down without a

label, then no order is given. But if it went left, it can be read with that as

label, and likewise for right. A rather pedantic distinction, but sometimes

needed! Finally, even if presented as a binary tree, it is not a complete

binary tree as there are nodes (in fact three of them) with exactly one child.

Its node-height is 5, link-height 4.

7.4 Interlude: Parenthesis-Free Notation

In our arithmetical and logical examples of syntactic decomposition trees, we used

brackets. This is necessary to avoid ambiguity. Thus the expression 5+2�x is

ambiguous unless brackets are put in (or a convention adopted, as indeed is

usually done for multiplication, that it ‘binds more strongly than’, or ‘has priority

over’ addition). Likewise, the logical expression :r$s^:p is ambiguous unless

parentheses are inserted or analogous conventions employed.

In practice, we frequently adopt priority conventions, and also drop brackets

whenever different syntactic structures have the same semantic content, as for

example with x+y+z. Such conventions help prevent visual overload and are part

of the endless battle against the tyranny of notation.

For a while in the early twentieth century, a system of dots was used by some

logicians (notably Whitehead and Russell in their celebrated Principia Mathe-

matica) to replace brackets. Thus (p!:q)!(:r$(s^:p)) was written as

p!:q.!::r$.s^:p where the dot after the q indicates a right bracket (the

left one being omitted because it is at the beginning of the formula), the dot
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before the s marks a left bracket (its right partner omitted because it is at the

end), and the two-dot colon marks another left bracket. The number of dots

indicates the ‘level’ of the bracket. However the system did not catch on, and has

now died out.

But is there any systematic way of doing without brackets altogether,

without special priority conventions or alternative devices like dots? There

is, and it was first noted by the philosopher/logician Łukasiewicz, early in the

twentieth century. Instead of writing the operation between its arguments,

just write it before them! Then brackets become redundant. For example,

the arithmetical expression (5+(2�x)){((y{3)+(2+x)) is written as

{+5�2x+{y3+2x.

To decipher this last sequence, construct its (unique!) decomposition tree from

the leaves to the root. The leaves will be labelled by the constants and variables.

+2x will label the parent of nodes labelled by 2 and x; {y3 will label the parent of

nodes labelled by 3 and y, etc.

This is known as Polish notation, after the nationality of its inventor. There is

also reverse Polish notation, where the operation is written after its arguments,

and which likewise makes bracketing redundant. The ordinary way of writing

expressions is usually called infix notation, as the operation is written in between

the arguments. The terms prefix and postfix are often used for Polish and reverse

Polish notation respectively.

EXERCISE 7.4.1 (WITH PARTIAL SOLUTION)

(a) Draw all possible decomposition trees for each of the ambiguous expres-

sions 5+2�x and :r$s^:p, writing the associated bracketed expres-

sion next to each tree.

(b) Draw the whole syntactic decomposition tree for the Polish expression

{+5�2x+{y3+2x.Compare it with the tree for (5+(2�x)){((y{3)+(2+x)).

(c) Put the propositional formula (p!:q)!(:r$(s^:p)) in both Polish

(prefix) and reverse Polish (postfix) notation.

(d) Insert a few redundant brackets into the outputs just obtained, to make

them friendlier to non-Polish readers.

Solution to (c) and (d):

(c) In prefix notation it is !!p:q$:r^s:p. In postfix notation it is

pq:!r:sp:^$!.

(d) !(!p:q)($(:r(^s:p)) and (pq:!)(r:(sp:^)$)!.
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7.5 Binary Search Trees

Computer science and logic both love binary concepts. In the case of logic, they

appear at its theoretical foundations: classical logic is two-valued, with truth-tables

for the logical connectives defined using functions into the two-element set f0,1g. In

computer science, they derive from a basic practical fact: a switch can be on or off.

This means that an essential role is played by bits, and binary notions are propa-

gated through the whole superstructure. Of all kinds of tree, the most intensively

employed in computing is the binary one. So we look at it in more detail.

As introduced in the preceding section, a binary tree is a rooted tree (possibly

empty) in which each node has at most two children, equipped with an ordering

that labels each child in the tree (even only children) with a tag left or right. When

drawing the tree on paper we need not write these labels explicitly; we can

understanding them as given by the position of nodes on the page.

Example. Of the four trees diagrammed below, the first is not a binary tree,

since the child of the root has not been given (explicitly or by orientation on the

page) a left or right label. The remaining three are binary trees. The second and

third are different binary trees, since the second gives a right label to the child of

the root, while the third gives it a left label. The third and the fourth are the same

when considered simply as binary trees, but they differ in that the fourth has

additional (numerical) labels.

What are binary trees used for? They { or, more specifically, a special kind of

binary tree known as a binary search tree { are convenient structures for manip-

ulating linearly ordered data. There are very efficient algorithms for working with

them { searching for and revising data. There are also good algorithms for

converting lists into binary search trees and back from them to lists. Moreover,

any finite tree can be reconfigured as a binary search tree. We explain these points

in turn.

3

9

4 1

Figure 7.5 Which are binary trees?
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We begin with the concept of a binary search tree. Suppose we have a binary

tree and a relation < that linearly orders its nodes. For example, the nodes might

be numbers and< the usual numerical order; or the nodes could be expressions of

a natural or formal language with< a lexicographic order. Then the binary tree is

called a binary search tree (modulo that relation) iff each node x is greater than

every node in the left subtree of x, and is less than every node in the right subtree

of x.

Alice box: Binary search trees

Alice: One moment: does the relation< order the nodes themselves, or labels on

the nodes?

Hatter: As we are defining the notion, it orders the nodes. You could, if

you like, treat it as a relation over labels, but it would follow from the

definition of a binary search tree that the labelling function must be

injective. So we might as well simplify life and think of < as ordering

the nodes themselves.

EXERCISE 7.5.1 (WITH SOLUTION)

Which of the four binary trees in Figure 7.6 below are binary search trees,

where the order < is the usual order between integers?

Solution: Tree (a) is not a binary search tree for three reasons: 2< 4, 10> 6,

10 > 9. Tree (b) isn’t either, because 5 > 3. Nor is (c) a binary search tree,

since 7 = 7. Only (d) is a binary search tree.

Remark: Note that in the definition of a binary search tree, we don’t

merely require that each node is greater than its left child and less

than its right child. We require much more: each node must be greater

than all nodes in its left subtree, and less than all nodes in its right

subtree.

Suppose we are given a binary search tree T. How can we search it to find out

whether it contains an item x? If the tree is empty, then evidently it does not

contain x. If the tree is not empty, the following recursive procedure will do the

job.
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Compare x with the root a of T.

If x = a, then print yes.

If x < a then

If a has no left child, then print no.

If a does have a left child, apply the recursion to that

child.

If x > a then

If a has no right child, then print no.

If a does have a right child, apply the recursion to that

child.

EXERCISE 7.5.2 (WITH SOLUTION)

(a) Execute the algorithm step by step to search for 6 in the last tree of

Figure 7.6.

(b) Do the same to search for 8.

(c) For readers familiar with the use of pseudocode: express the above

algorithm using pseudocode.

(a) (b)

(c) (d)

1

1

5

5

5

5

2

2

2 2

9

9

13 1 9 13

13 1 9 13

4

4

4 4

10

10

10

7

7

7

7

10

7

6

6 3

Figure 7.6 Which are binary search trees?
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Solution:

(a) The tree is not empty, so we compare 6 with the root 5. Since 6 > 5 we

compare 6 with the right child 7 of 5. Since 6< 7 we compare 6 with the

left child 6 of 7. Since 6 = 6 we print yes.

(b) The tree is not empty, so we compare 8 with the root 5. Since 8 > 5 we

compare 8 with the right child 7 of 5. Since 8> 7 we compare 8 with the

right child 10 of 7. Since 8< 10 we compare 8 with the left child 9 of 10.

Since 8 < 9 and 9 has no left child, we print no.

(c) An elegant way of doing it is as follows:

Search(tree)

begin

if tree is empty then

search := no

else

if item = root then

search := yes

else

if item < root then

search := search(left-subtree)

else

search := search(right-subtree)

end

The interesting thing about this algorithm is its efficiency. The tree will

never be higher than the length of the corresponding list of nodes, and often

very much less. At one end of the spectrum, when no node has two children,

the node-height of the tree and the length of the list will be the same. At the

other end of the spectrum, if every node other than the leaves has two

children and all branches are the same length, then the tree will have 2h { 1

nodes where h is the node-height of the tree. In other words, the tree will

have node-height only log2(n+1) where n is the number of its nodes. A

search using the algorithm down a branch of length h will thus be very much

quicker (in both worst and average cases) than one plodding through a list

of all 2h { 1 nodes.

There are also algorithms to insert nodes into a binary search tree and to

delete nodes from it, in each case ensuring that the resulting structure is still

a binary search tree. The algorithm for insertion is quite simple, as it always

inserts the new node as a leaf. That for deletion is rather more complex, as it
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deletes from anywhere in the tree, leaves or interior nodes. We sketch the

insertion algorithm, omitting the deletion one.

To insert an item x, we begin by searching for it using the search

algorithm. If we find x, we do nothing, since it is already there. If we

don’t find it, we go to the node y where we learned that x is absent from the

tree (it should have been in a left resp. right subtree of y, but y has no left

resp. right child). We add x as a child of y with an appropriate left or right

label.

EXERCISE 7.5.3 (WITH SOLUTION)

Consider again the binary search tree in Figure 7.6. What is the tree that

results from inserting the node 8 by means of the algorithm sketched

above?

Solution: Searching for 8 in the tree, we reach node 9 and note that 8 should

be in its left subtree, but that 9 is a leaf. So we add 8 as left child of 9.

How do we construct our binary search trees in the first place? Essentially, by

repeated insertion beginning from the empty tree. Suppose that our set of items is

given in the form of a list of nine words, e.g. the list l = (this, is, how, to, construct,

a, binary, search, tree) and that our ordering relation < for the tree construction

is the lexicographic one (i.e. dictionary order). We begin with the empty tree, and

search in it for the first item in the list, the word ‘this’. Evidently it is not there, so

we put it as root. We then take the next item in the list, the word ‘is’ and search for

it in the tree so far constructed. We don’t find it, but note that ‘is’ < ‘this’ and so

we add it as a left child of ‘this’. We continue in this way until we have completed

the tree.

EXERCISE 7.5.4

(a) Complete the construction of the binary search tree from the word-list

l = (this, is, how, to, construct, a, binary, search, tree).

(b) For readers familiar with the use of pseudocode: express the above

algorithm for constructing a binary search tree, using pseudocode.

Evidently, when constructed by this algorithm, the shape of the tree

depends on the order in which the items are listed. For example, if in the

above example the same words were presented in the list l 0 = (a, binary,
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construct, how, is, search, this, to, tree), the binary search tree would be a

chain going down diagonally to the right, and just as high as the list is long.

Clearly, we would like to keep the height of the tree as low as possible. The

optimum is to have a complete binary tree (i.e. two children for every node

other than the leaves) with all branches of the same length. This is possible

only when the list to be encoded has node-length 2h { 1 for some h � 0.

Nevertheless, for any value of h � 0 it is possible to construct a complete

binary search tree in which no branch is more than one node longer than any

other, and where the longer branches are all to the left of the shorter ones.

Moreover, there are good algorithms for carrying out this construction,

although we will not describe them in this text.

We end this section by describing one way in which any (finite) ordered

tree may be transformed into a binary tree. Let T be any finite ordered

tree. To construct our binary tree T 0 we use exactly the same nodes, and

begin the construction by keeping the same root. Let a be any node of the

binary tree T 0 as so far constructed. Its left child will be the first child of a

in the original tree T, and its right child will be the next sibling of a in the

original tree T.

EXERCISE 7.5.5

(a) Transform the tree of Figure 7.1 (considered as ordered with left to

right ordering of siblings) into a binary tree.

(b) Is it complete?

(c) Give a simple example to show that this transformation, applied to a

binary tree, will not in general be the identity.

7.6 Unrooted Trees

We now go back to the rooted tree in Figure 7.1 at the beginning of this chapter,

and play around with it. Imagine that instead of the figure made of dots and lines

on paper, we have physical model, made of beads connected with pieces of string

or wire. We can then pick up the model, push the root a down, and bring up b, say,

so that it becomes the root. Or we can rearrange the beads on a table so that the

model loses its tree-like shape, and looks more like a road map in which none of the

nodes seems to have a special place. When we do this, we are treating the model as

an unrooted tree.
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7.6.1 Definition of Unrooted Tree

Formally, an unrooted tree (alias undirected tree) may be defined as any structure

(T,S) that can be formed out of a rooted tree (T,R) by taking S to be the

symmetric closure of R.

Recall the definition of the symmetric closure S of R: it is the least symmetric

relation (i.e. intersection of all symmetric relations) that includes R. Equiva-

lently, S = R[R{1. Diagrammatically, it is the relation formed by deleting the

arrow-heads from the diagram of R (if there were any) and omitting any conven-

tion for reading a direction into the links.

EXERCISE 7.6.1

(a) Take the rooted tree in Figure 7.1 and redraw it as an unrooted tree

with the nodes scattered haphazardly on the page.

(b) Re-root the unrooted tree that you obtained, by drawing it with node m

as root.

(c) Check the equivalence of the two definitions of symmetric closure.

In the context of unrooted trees, terminology changes. Nodes are usually

called vertices. More important, as well as speaking of links, which are ordered

pairs (x,y), i.e. elements of the relation, we also need to speak of edges (in some

texts, arcs), identifying them with the unordered pairs fx,yg such that both (x,y)

and (y,x) 2 S.

It appears that the mathematical concept of an unrooted tree was first

articulated in the context of chemistry, by the mathematician Arthur Cayley in

1857. Graphs were already being used to represent the structure of molecules,

with vertices (nodes) representing atoms and (undirected) edges representing

bonds. Cayley noticed that the saturated hydrocarbons { i.e. the isomers of

compounds of the form CnH2n+2 { have a special structure: they are all what we

call unrooted trees.

Alice Box: Unrooted trees

Alice: That’s a nice, simple definition { provided we are coming to the subject

via rooted trees. But what if I wanted to study unrooted trees before the rooted

ones? Could I define them in a direct way?

Hatter: No problem. We will do that shortly, after noting some properties

ensuing from our present definition.
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7.6.2 Properties of Unrooted Trees

Let (T,S) be an unrooted tree, with S the symmetric closure of the link relation R of a

rooted tree (T,R). Clearly, S is connected (over T), i.e. for any two distinct elements x, y

of T, there is an S-path from x to y, i.e. a finite sequence a0,. . .,an (n� 1) of elements of T

such that x = a0, y = an, and each pair (ai,ai+1)2 S. The proof is very straightforward.

Since (T,R) is a rooted tree, it has a root a. We distinguish three cases. In the case that

a = x, by the definition of a rooted tree we have a R-path from x to y, and this is an

S-path. In thecase thata=y,wehaveaR-path fromy toxandthus, running it in reverse

(which is legitimate since S is symmetric), we have a S-path from x to y. Finally, if a 6¼ x

and a 6¼ y we know that there are R-paths from a to each of x, y considered separately.

Reversing the path from a to x,wehavean S-path from x to a; and continuing it from a to

y (i.e. take the composition of the two paths), we end up with one from x to y.

EXERCISE 7.6.2

Draw tree diagrams to illustrate the three cases of this proof and the

constructions made.

Less obvious is the fact that S is a minimal connected relation over T. In other

words, no proper subrelation of S is connected over T { for any pair (x,y) 2 S, the

relation S 0 = S nf(x,y)g is not connected over T. For suppose that (x,y) 2 S. Then

either (x,y) 2 R or (y,x) 2 R. Consider the former case; the latter is similar. We

claim that there is no S 0-path from a to y where a is the root of the rooted tree

(T,R). Suppose for reductio ad absurdum that there is such a S 0-path, i.e. a finite

sequence a0,. . .,an (n� 1) of elements of T such that a0 = a, an = y, and each pair

(ai,ai+1) 2 S 0. We may assume without loss of generality that this is a shortest

such path, so that in particular never ai = ai+2. Since (an{1,an)2 S 0, we have either

(an{1,an) 2 R or conversely (an,an{1) 2 R. But the former is impossible. Reason:

since an = y and no node can have two R-parents, we must have an{1 = x, so that

(x,y) is the last link in the S 0-path, contradicting the fact that (x,y) =2 S 0. Thus the

latter alternative (an,an{1) 2 R must hold. But then by induction from n to 1, we

must have each (ai+1,ai) 2R, for otherwise we would have an ai with two distinct R-

parents. This gives us a R-path from y to the root a, which is impossible by the

definition of a rooted tree.

EXERCISE 7.6.3

(a) Draw a circular diagram to illustrate the above argument.

(b) In the proof we said: ‘We may assume without loss of generality that

this is a shortest such path’. Explain why.

7.6 Unrooted Trees 211



The second key property of unrooted trees is that they have no simple

cycles. Recall that a cycle is a path whose first and last items are the same.

So a cycle of an unrooted tree (T,S) is a sequence a0,. . .,an (n � 1) of

elements of T with each (ai,ai+1) 2 S and an = a0. A simple cycle is one

with no repeated edges, i.e. for no i < j < n do we have fai,ai+1g = faj,aj+1g.
Expressed in terms of the relation R of the underlying rooted tree: the

sequence a0,. . .,an = a0 never repeats or reverses an R-link. It may however

repeat vertices.

For example, the cycles a,b,c,b,a and a,b,c,e,c,b,a are not simple, since each

contains both of (b,c) and (c,b). The cycle a,b,c,e,b,c,a is not simple either, as it

repeats the link (b,c). On the other hand, the cycle a,b,c,d,c,a is simple, despite

the repetition of vertex c.

EXERCISE 7.6.4

(a) Take the first-mentioned cycle a,b,c,b,a and add c in second place, i.e.

after the initial a. Is it simple?

(b) Take the last mentioned cycle a,b,c,d,c,a and drop the node b. Is it

simple?

Clearly, any unrooted tree with more than one vertex is full of cycles:

whenever (x,y) 2 S then by symmetry (y,x) 2 S giving us the cycle x,y,x. The

interesting point is that it never has any simple cycles. To see this, suppose for

reductio ad absurdum that it does have a simple S-cycle a0,. . .,an = a0. We may

assume without loss of generality that this is a shortest one, so that in particular

ai 6¼ aj for distinct i,j except for the end points a0, an. We distinguish three cases

and find a contradiction in each. Case 1. Suppose (a0,a1) 2R. Then for all i with

0 � i < n we have (ai,ai+1) 2 R, for otherwise some ai+1 would have two R-

parents ai and ai+2, which is impossible. Thus the S-cycle a0,. . .,an = a0 is in fact

an R-cycle, which we know from earlier in this chapter is impossible for the link

relation R of a rooted tree. Case 2. Suppose (an,an{1) 2 R. A similar argument

shows that this case is also impossible. Case 3. Neither of the first two cases

holds. Then (a1a0) 2 R and (an{1,an) 2 R. Since a0 = an and no node of a rooted

tree can have two distinct parents, this implies that a1 = an{1. But that gives us a

shorter S-cycle a1,. . .,an{1 = a1 which must also be simple, again giving us a

contradiction.
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EXERCISE 7.6.5

Draw circular diagrams to illustrate the three cases of this proof.

Indeed, we can go further: when (T,S) is an unrooted tree then S is

maximally without simple cycles. What does this mean? Let (T,S) be an

unrooted tree, derived from a rooted tree (T,R). Let x,y be distinct elements

of T with (x,y) =2 S. Then the structure (T,S 0) where S 0 = S[f(x,y), (y,x)g
contains a simple cycle. We will not give a full proof of this, just sketching

the underlying construction. In the principal case that x,y are both distinct

from the root a of (T,R), then there are unique R-paths from a to each of

them. Take the last node b that is common to these two R-paths, and form

an S-path from x up to b (using R{1) and then down to y (using R). With

(y,x) also available in S 0, we thus get an S 0-cycle from x to x, and it is not

difficult to check that this cycle must be simple.

EXERCISE 7.6.6

(a) Draw a tree diagram to illustrate the above proof sketch.

(b) Fill in the details of the above proof by (i) covering the cases that

either x or y is the root and (ii) in the case that neither is the root,

showing that the constructed cycle is simple, as claimed in the

text.

Summarizing what we have done so far in this section, we see that unrooted

trees (T,S) satisfy the following conditions:

l S is the symmetric closure of the link relation of some rooted tree (T,R)

(by definition)

l S is symmetric, T is connected by S, and S has no simple cycles

l S is symmetric, and T is minimally connected by S

l S is symmetric and is maximally without simple cycles.

In fact, it turns out that these four conditions are mutually equivalent, for any

set T and relation S�T 2, so that any one of them could serve as the definition of a

rootless tree. The first bulleted condition defined rootless trees out of rooted ones;

the remaining ones could be used to define them directly. A relation S that

satisfies any one of these conditions, for a given set T, is also known as a spanning

tree for T.
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Alice Box: Explicit versus recursive definitions of unrooted trees

Alice: Thanks, this answers my last query. But one question leads to another.

Could we also define unrooted trees recursively, as we did for rooted ones?

Hatter: Of course. Indeed, we need only take the recursive definitions for rooted

trees and tweak them a little. Do it as an exercise.

EXERCISE 7.6.7 (WITH PARTIAL SOLUTION)

(a) Without proof, using only your intuition, do the exercise for Alice.

(b) Show that an unrooted tree with n vertices must have n{1 edges.

(c) Give an example to show that this numerical relation between vertices

and edges is not, however, sufficient to guarantee that a structure (T,S)

with S irreflexive and symmetric, is an unrooted tree.

Solution to (b) and (c):

(b) Let (T,S ) be an unrooted tree, obtained from a rooted tree (T,R). In an

exercise in an earlier section of this chapter, we showed that if T has n

elements, then R must have n{1 links. But by definition, (T,R) and

(T,S) have the same vertices, and the number of edges of (T,S) is the

same as the number of links of (T,R). The desired result follows

immediately.

(c) The simplest example has four vertices, with three connected in a

simple cycle and the fourth not connected to anything.

7.6.3 Finding Spanning Trees

The equivalence of the four bulleted conditions above provides us with a very

useful tool. For example, suppose we are given a set A connected by a symmetric

and irreflexive relation S over it. There may be many S-paths between vertices, and

many simple cycles. In the limit, every element of A may be related to every other

one, giving us n(n{1)/2 edges, where n is the number of elements of A. That is a lot

of information, most of which may be redundant for specific purposes. Often, we

need only just enough information to know that A is connected. So the question

arises: Is there an algorithm which, given a set A connected by a symmetric and
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irreflexive relation S over it, finds a minimal symmetric relation S 0 � S that

connects A? In other words, an algorithm to find a spanning tree for A?

Clearly there is a ‘top down’ procedure that does the job. We take the

given relation S connecting A, and take off edges one by one in such a way

as to leave A connected. When we get to a point where it is no longer

possible to delete any edge without de-connecting A (which will happen

when we have got down to n{1 edges, where n is the number of vertices),

we stop. That leaves us with a minimal symmetric relation S 0 � S connect-

ing A { which is what we are looking for.

But there is also a ‘bottom up’ procedure that does the job. We begin

with the empty set of edges, and add in edges from S one by one in such a

way as never to create a simple cycle. When we get to a point where it is no

longer possible to add an edge from S without creating a simple cycle (which

will happen when we have got up to n{1 edges, where n is the number of

vertices), we stop. That leaves us with a maximal relation S 0 � S without

simple cycles. By the last two of the four equivalent conditions bulleted

above, S 0 will also be a minimal symmetric relation connecting A { which

is what we are looking for.

In general, the ‘bottom up’ algorithm is much more efficient than the ‘top

down’ one for finding a spanning tree, since it is less costly computationally to

check whether a given relation creates a simple cycle than to check whether a

given set is connected by a relation.

EXERCISE 7.6.8

For readers familiar with the use of pseudocode: express each of the algo-

rithms above using pseudocode.

In many problems, we need to go further and consider symmetric

relations whose edges have numerical weights attached to them. These

weights may represent the distance between vertices, or the time or cost

involved in passing from one to the other. In this context, we often want

to do more than minimize the set of edges in a relation connecting the

domain; we may wish to minimize total cost, i.e. minimize the sum of

their weights. In the usual terminology, we want to find a minimal span-

ning tree for A.

The ‘bottom up’ algorithm that we have described for finding a

spanning tree can be refined to one that finds a minimal spanning tree.

However pursuit of this issue would take us beyond the limits of the

present book.
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FURTHER EXERCISES

7.1. Properties of rooted trees

(a) Show that the relation R of a rooted tree (T,R) is always intransitive, in

the sense defined in the chapter on relations. Hint: Use the explicit

definition of a rooted tree, and argue by using proof by contradiction.

(b) Consider the ‘new root’ definition of a rooted tree. Show that the tree

constructed by an application of the recursion step has height (whether

node-height or link-height) one larger than the maximal height (in the

same sense) of its immediate subtrees.

(c) Do the same with the ‘new’ leaf definition of a rooted tree.

(d) In the text we defined the notion of a subtree of a tree, but we did not

verify that when so defined, it is always itself a tree. Check it.

7.2. Definitions of rooted trees

Show the equivalence of the three definitions of a rooted tree { explicit,

recursive by ‘new root’ and recursive by ‘new leaf’. Remark: This is a

challenging exercise, and its answer will have to consist of at least three

parts. Perhaps the simplest strategy is to establish a cycle of implications.

7.3. Labelled trees

(a) Construct the syntactic decomposition tree of the arithmetic

expression (8{(7+x))+(y3+(x{5)).

(b) Construct the syntactic decomposition tree of the arithmetic

expression {({(8{(7+x))).

(c) Explain why the syntactic decomposition tree of any arithmetic expres-

sion formed from variables and/or constants by the operations of addi-

tion, subtraction, multiplication, division, exponentiation (xy) and

taking arbitrary roots (x ffip
y), must be a complete binary tree. What

happens if one allows into the syntax the one-place operation of sign-

reversal (the minus sign)?

(d) Draw the mirror image of the tree in Figure 7.3, with its labels. Write

down the arithmetic expression to which it corresponds, in both stan-

dard and Polish notation.
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7.4. Binary search trees

(a) Using the construction algorithm given in the text, construct a binary

search tree for the list of letters (g,c,m,b,i,h,o,a) where the ordering

relation < is the usual alphabetical one.

(b) In the tree you have constructed, trace the steps in a search for the

letter i, using the search algorithm in the text.

(c) To the tree you have constructed, add the letter f, using the insertion

algorithm in the text.

7.5. Unrooted trees

Consider the complete graph (G,R) with five vertices, i.e. the graph in

which there is an edge between each vertex and every other vertex.

(a) Construct a spanning tree for this graph by the top-down method,

showing by successive diagrams each step.

(b) Construct a different spanning tree by the bottom-up method, again

showing your steps by successive diagrams.

Selected Reading

Almost all introductory texts of discrete mathematics have a chapter on trees.

Usually it follows one on graphs { in contrast to our procedure here, which

treats trees without getting into the more general theory of graphs. Among the

most widely texts used are:

John A. Dossey et al. Discrete Mathematics. Pearson, 2006 (fifth edition)

Chapters 4 (graphs) and 5 (trees).

Ralph P. Grimaldi Discrete and Combinatorial Mathematics. Addison Wesley,

2004 (fifth edition), Chapters 11 (graphs) and 12 (trees).

Richard Johnsonbaugh Discrete Mathematics. Pearson, 2005 (sixth edition)

Chapters 8 (graphs) and 9 (trees).

Kenneth Rosen Discrete Mathematics and its Applications. McGraw Hill, 2007

(sixth edition), Chapters 9 (graphs) and 10 (trees).
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8
Yea and Nay: Propositional Logic

Chapter Outline

We have been using logic on every page of this book { in every proof, verification

and informal justification. In the first four chapters we inserted some ‘logic boxes’;

they gave just enough to be able to follow what was being done. Now we gather

the material of these boxes together and develop their principles. Logic thus

emerges as both a tool for reasoning and an object for study.

We begin by explaining different ways of approaching the subject, and situat-

ing the kind of logic that we will be concerned with. We give an outline of the

purely structural part of logic { that is, the part that is independent of the

expressive power and internal features of the language under consideration {

and then go on to a more detailed account of truth-functional, also known as

classical propositional, logic. The basic topics will be the truth-functional con-

nectives, the family of tautologicality concepts, the availability of normal forms

and unique minimalities, the use of semantic decomposition trees as a shortcut

method for testing status, and finally a sketch of natural deduction with its two

components, enchaining and indirect inference. The following chapter will get

into the quantifiers.

Readers are advised to flip back to the logic boxes in the first four chapters to

get up to speed for these two.

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 8, � Springer-Verlag London Limited 2008
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8.1 What is Logic?

What we will be studying in these chapters is only one part of logic, but a very

basic part. In its most general form, logic is best seen as the study of reasoning, to

use an old-fashioned term, belief management for a more fashionable one. It

concerns ways in which agents (human or other) may develop and shape their

beliefs, by inference, organization, and change.

l Inference is the process by which one proposition is accepted on the basis of

others, as justified by them.

l Organization is the business of getting whatever we believe into an easily

exploitable pattern. It is particularly important in mathematics, where it can

take the form of axiomatization. Even when axiomatization is not available or

appropriate, some kind of conceptual structuring is still needed to find a global

view.

l Change takes place when we decide to abandon a belief { a process known to

logicians as contraction. It can also take the form of revision, where we accept

something that we previously ignored or rejected, at the same time making

sufficient contractions to maintain consistency of the whole. A closely related

form of belief change, of particular interest to computer science, is update. This

is the process of modifying our stock of beliefs about a domain to keep up with

changes that are taking place in the world. Evidently, it is very close to revision

in the sense that we have described, but there are also subtle differences.

Of all these processes of belief management, the most basic is inference. It

reappears in all of the others, just as sets reappear in relations, functions, prob-

ability and trees. For this reason, introductory logic books restrict themselves to

inference, leaving other concerns for advanced work. Even within that sphere, they

look at only one part of the subject, though admittedly the most fundamental one {

deductive as contrasted with non-deductive inference. We must do the same.

That this is a real limitation becomes apparent if you reflect on the kind of

reasoning that you carry out in daily life, outside the study and without the aid of

pen and paper. Even when it takes the form of inference, it is seldom fully

deductive. The conclusions you reach are (hopefully) plausible, reasonable, prob-

able, or convincing given the assumptions made; but they are rarely if ever

absolutely certain given those same assumptions. There is the possibility, perhaps

remote, that even if the assumptions are true, the conclusion might still be false.

But within mathematics, the game is quite different. There we make systematic

use of fully deductive inference, rendering the conclusions certain given the

assumptions made. This is not to say that there is any certainty in the assumptions
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themselves, nor for that matter in the conclusions. It lies in the link between them:

it is impossible for the premises to be true without the conclusion also being so.

That is the kind of reasoning we will be studying in these chapters. It provides

a basis that is needed before trying to tackle any other kind of inference or belief

management. Its study goes back two thousand years; in it modern form, it began

to take shape in the middle of the nineteenth century.

8.2 Structural Features of Consequence

Inferences are made up of propositions, alias assertions or statements. As in the

logic boxes of earlier chapters, we will use lower-case Greek letters a, b, . . . for

them. Shortly we will need to look at their internal structure, but for the moment

we treat them as unanalysed objects. All we need to assume in this section is that

propositions may sometimes be true (unfortunately, not always so), and that that

we would like our inferences to preserve truth. Deductive inferences should

guarantee that we never lose it.

An inference links a set A of propositions, called its premises, and a proposi-

tion b called its conclusion. Typically A is finite, so that A ¼ fa1,. . .,ang for some

natural number n � 0, and we will attend mainly to that case. But for smooth

formulation it will sometime be convenient to cover infinite sets of premises as

well. It may seem odd that we are allowing the case that n¼ 0, i.e. that A may be

the empty set, but that will become clear as we proceed.

A proposition b is said to be a logical consequence (briefly, when context is

clear: consequence) of a set A of propositions, and we write A j- b, iff it is

impossible for its conclusion to fail to be true while its premises are all true.

Looking at the relation conversely, we also say that A logically implies b (briefly:

implies) in this situation. Note that this does not require the premises to be true,

nor the conclusion to be so; merely that the former is impossible without the

latter. The sign j- is called the gate or turnstile symbol. To reduce notation, it is

customary to drop parentheses and write a j- b instead of fag j- b, often even

a1,. . .,an j- b in place of fa1,. . .,ang j- b.

What are the general properties of the consequence relation? Perhaps the

most basic is the property known as identity: every proposition is a consequence of

any set of which it is an element. That is,

A j- b whenever b 2 A:

The justification is immediate. Suppose b 2 A. Then it is impossible for b to

fail to be true when every element of A (thus including b itself) is so. Taking the
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particular case where A is a singleton fag, the principle also tells us that a j- a for

any formula a.

Alice Box: Using logic in order to understand logic

Alice: This is weird. You are using logic to explain logic!

Hatter: Indeed we are. And there is no way around it. The extraordinary thing

is that it can be done. It is rather like using your eyes to study, in a magnifying

mirror, the structure of your eyes.

Alice: The definition of consequence made use of the notion of truth. But you

did not mention falsehood, only the presence or absence of truth. Any reason

for this?

Hatter: We will need the notion of falsehood, with the principle of bivalence

linking truth and falsehood, in the next section when we begin analysing the

internal structure of propositions. We could have used it already here, but we

don’t really need it yet.

A second property of the consequence relation, less trivial, is known as

cumulative transitivity (alias cut): whenever b1, b2, . . . are all consequences of a

set A, and g is a consequence of A taken together with b1, b2, . . ., then g is a

consequence of A itself. That is:

WheneverA j- b for all propositions b 2 B; and A [B j- g then A j- g:

Justification: Suppose all propositions in A are true. Then since A j- b for all

propositions b 2 B, each such b must be true, so that all propositions in A[B are

true. Hence since A[B j- g we know that g is true.

Another way of putting this: we may accumulate validly obtained conclusions

into our initial premises without ever being led astray. When B is a singleton fbg,
this gives us the following particular case, rather easier to grasp:

Whenever A j- b and A [ fbg j- g then A j- g

When A is also a singleton fag this comes down to:

Whenever a j- b and fa; bg j- g then a j- g

Innocent as cumulative transitivity may be for deductive reasoning, it is not in

general appropriate for all forms of non-deductive inference. In particular, prob-

abilistic inference does not satisfy it! But that is beyond our present concerns.
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A third property is known as monotony (or monotonicity). It tells us that

whenever g is a consequence of a set A, then it remains a consequence of any set

obtained by adding any other propositions to A. In other words, increasing the

stock of premises can never lead us to drop a conclusion:

WheneverA j- g andA � B thenB j- g

Not that this is for arbitrary choice of B { even when B is inconsistent with A,

or with g. While monotony holds for deductive inference, again it is quite unac-

ceptable for non-deductive reasoning, whether probabilistic or expressed in qua-

litative terms. That is why some recently developed systems for uncertain

reasoning have been dubbed ‘nonmonotonic logics’.

Taken together, these three principles are often known as the Tarski condi-

tions on logical consequence as a relation, named after the Polish logician Alfred

Tarski.

EXERCISE 8.2.1 (WITH PARTIAL SOLUTION)

(a) Justify the principle of monotony for deductive inference j- in the

same way as we justified the principles of identity and cumulative

transitivity.

(b) Show that monotony may equivalently be expressed thus: whenever A

j- g then A[B j- g.

(c) Show that monotony may also be expressed as: whenever A\B j- g
then A j- g.

(d) Sketch a simple intuitive example of non-deductive reasoning (say,

concerning the guilt of a suspect in a criminal case) that illustrates

how the principle of monotony may fail in such contexts.

(e) Obtain the plain transitivity of the relation j- of logical consequence

from its cumulative transitivity and monotony.

(f) Is plain transitivity always appropriate for non-deductive inference?

Give an intuitive counterexample or explanation.

Solution to (b) and (f):

(b) Summary proof: Clear from the fact that A � B iff B ¼ A[B. Detailed

verification: Consider the two directions separately. In one direction:

assume the version in the text and suppose A j- g; we want to show that

A[B j- g. But A�A[B and so A[B j- g. In the other direction: assume
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the version in the exercise and suppose both A j- g and A� B; we want

to show that B j- g. But since A � B we have B ¼ A[B, so B j- g.

(f) No, plain transitivity fails for non-deductive inference. One way of

illustrating this is in terms of an intuitive notion of risk. When we

pass from a to b non-deductively, there is a small risk of losing

truth, and passage from b to g may likewise incur a small risk.

Taking both steps compounds the risk, which may thereby exceed a

reasonable threshold that each of the separate ones respects. In

effect, the strength of the chain may be even less than the strength

of its weakest link. Remark. This informal explanation is all we need

here. It can be made precise in terms of probabilities and qualitative

analyses, but that is beyond the scope of this book.

We mention a last structural condition, which links the finite with the infinite

and is usually known as compactness. It says that whenever b is a consequence of a

set A of propositions, then it is a consequence of some finite subset of A. In other

words:

WheneverA j- b then there is a finite subsetA0 � AwithA0 j- b:

Note carefully the word some here. The principle does not tell us which subsets

A0 of A are strong enough to do the job; it only tells us that there is at least one,

without letting us know what it is, or even how big it might be. Moreover the

choice and size of A0 will in general depend on the conclusion b under considera-

tion, as well as on A. Given A j- b and A j- g compactness tells us that there are

finite sets A1, A2�A with A1 j- b and A2 j- g; but we will not in general have A1 j- g
or A2 j- b.

The justification of compactness is rather more subtle than that of

identity, cumulative transitivity or monotony; indeed it requires a closer

analysis of the internal structure of propositions. It holds for most (though

not all) forms of deductive inference. As this book focuses on the finite case,

we will not follow these matters further, just leaving the reader with the

following easy exercise.

EXERCISE 8.2.2

Use compactness and monotony to show that whenever A is an infinite

set of propositions and A j- b then there are infinitely many finite

subsets A0 � A with A0 j- b.

224 8. Yea and Nay: Propositional Logic



Logicians have found it convenient to express logical consequence in an

equivalent manner, as a function (alias operation) rather than as a relation. Let

A be any set of propositions, and define Cn(A)¼ fb: A j- bg. The function Cn thus

takes sets of propositions to sets of propositions; we can write it as Cn: P(L)!
P(L), where L is the set of all propositions of the language under consideration and

P is the powerset operation, familiar from the chapter on sets. The name Cn is

chosen to recall the word ‘consequence’. So formulated, the operation has the

following properties:

Inclusion : A � CnðAÞ
Idempotence : CnðAÞ ¼ CnðCnðAÞÞ
Monotony : WheneverA � B thenCnðAÞ � CnðBÞ:

These reflect the three basic properties of consequence as a relation, and can be

derived from them. Taken together, they are also called the Tarski conditions for

logical consequence as an operation. The term closure operation is also often used

for any function satisfying them. Evidently, the operational formulation is much

more succinct than the relational one, and for this reason it is very useful when one

gets further into the subject; but it does take a bit of getting used to. In this book

we will usually talk in terms of a relation.

EXERCISE 8.2.3

(a) Show that Tarski condition of inclusion, for logical consequence as an

operation, follows from identity for consequence as a relation, via the

definition Cn(A) ¼ fb: A j- bg given in the text.

(b) What would be the natural way of defining consequence as a relation

from consequence as an operation?

(c) For aficionados of the infinite: Devise a succinct expression of compact-

ness in the language of consequence as an operation. Hint: Try filling in

the dots in Cn(A) ¼ [f. . ...g.

(d) Given the relation j- of logical consequence, what would be the natural

definition of logical equivalence between two propositions? Check that

your candidate relation is reflexive, symmetric and (especially)

transitive.

(e) In the same vein, what would be the natural definition of logical

equivalence between two sets of propositions?
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8.3 Truth-Functional Connectives

Having looked at the general concept of deductive inference and articulated its

basic properties as a relation and as an operation, we now peer into the interior of

propositions to examine some of the ways in which they may be built up. We can

then see how the general definition of logical consequence, given in the preceding

section, manifests itself in this context.

The simplest ways of building new propositions out of old are by means of the

truth-functional connectives ‘not’, ‘and’, ‘or’, ‘if’, ‘iff’, etc. We have already

introduced these one by one in logic boxes in the first four chapters, and we will

not repeat everything here. If you have not already done it, you should revise

those boxes before going further. For easy reference, however, we recall the truth-

tables. The one-place connective ‘not’ has the table:

Table 8.1 Truth-table for negation.

a :a
1 0

0 1

The two-place connectives ‘and’, ‘or’, ‘if’, ‘iff’ have the tables, grouped together:

Table 8.2 Truth-table for familiar two-place connectives.

a b a^b a_b a!b a$b

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 1 1 0

0 0 0 0 1 1

Here 1 is for truth, and 0 is for falsehood. We are thus using a little more machinery

than in the section on consequence relations, where truth alone was used. A basic

assumption made in these tables is the principle of bivalence: every proposition is

either true, or false, but not both. In other words, the truth-values of propositions may

be represented by a function with domain the set of all propositions of the language

under consideration (about which more shortly) into the two-element set f1,0g.

Alice Box: The principle of bivalence

Alice: What happens if we relax the principle of bivalence?

Hatter: There are two main ways of going about it. One is to allow that there

may be truth-values other than truth and falsehood. This gives rise to the

study of what is called many-valued logic.

(Continued)
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Alice Box: (Continued)

Alice: And the other?

Hatter: We can allow that the values may not be exclusive, so that a proposi-

tion may be both true and false. That can also be accommodated within many-

valued logic by using new values to represent subsets of the old values. For

example, we might use four values (the two old ones and two new ones) to

represent the four subsets of the classical values 1 and 0. There are also systems

of logic that avoid truth values altogether. But these are all non-classical, and

beyond our compass. In any case, classical logic remains the standard base.

It is time to look more closely at the concept of a truth-function in two-valued

logic. A one-place truth-function is simply a function on domain f1,0g into f1,0g.
A two-place one is a function on f1,0g2 into f1,0g, and so on. This immediately

suggests all kinds of questions. How many one-place truth-functions are there?

Two-place, and generally n-place? Can every truth-function be represented

by a truth-table? Are the specific truth functions given in the tables above

sufficient to represent all of them, or should we introduce further logical con-

nectives to do so?

Clearly, there are just four one-place truth-functions. Each can be represented

by a truth-table. In the leftmost column we write the two truth values 1,0. In the

remaining columns we write the possible values of the functions for those two

values of their arguments:

Table 8.3 The one-place truth-functions.

a f1(a) f2(a) f3(a) f4(a)

1 1 1 0 0

0 1 0 1 0

EXERCISE 8.3.1 (WITH SOLUTION)

(a) Which of these four truth-functions fi corresponds to negation?

(b) Can you express the other three truth-functions in terms of connectives

with which you are familiar (:, ^, _,!,$)?

Solution:

(a) Obviously, f3.

(b) f2 is the identity function, i.e. f2(a)¼ a, so we don’t need to represent it

by more than a itself. f1 is the constant function with value 1, and so can
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be represented as, say, a_:a or a!a or a$a. Finally, f4 is the constant

function with value 0, and can be represented as a^:a, or as the

negation of any of those for f1.

Going on to the two-place truth-functions, the Cartesian product f1,0g2
evidently has 22 ¼ 4 elements, which may be listed in a table with four rows, as

in the tables for the familiar two-place connectives. We always write these four

rows in a standard order, as in those tables. For each pair (a,b) 2 f1,0g2 there are

evidently two possible values for the function, which gives us 42 ¼ 16 columns to

fill in, i.e. 16 truth-functions.

EXERCISE 8.3.2

(a) Write out a table for all 16 two-place truth-functions. Hints: You

will need 4 rows for the four ordered pairs (a,b) 2 f1,0g2, plus a

top one for the labels. For easy communication, the rows should be

written in the standard order. You will need 16 columns for the

sixteen functions, plus 2 for their two arguments. Again, these

columns should be given in standard order: begin with the column

(1,1,1,1) and proceed in the natural way to the last column

(0,0,0,0). The principle for constructing each column from its

predecessor: take the last 1 in the preceding column, change it to

0, and replace all 0 s lower in the column to 1.

(b) Draw a binary tree of link-depth 4 in which the 16 truth-functions of

two places are represented by branches, with standard order from left

to right.

(c) Can you express all sixteen truth-functions in terms of the familiar ones

:, ^, _,!,$?

In general, for the n-place truth-functions f(a1,..,an) with each ai 2 f1,0g, we

need r¼ 2n rows in the table (plus a top one for the labels) and thus 2r columns for

the truth-functions (in addition to n columns on the left for the n arguments). The

number of truth-functions is thus doubly exponential in the number of their

arguments.

The familiar truth-functions are all two-place ones. Is this a gap in their

expressive power, or can every truth-function, of no matter how many places,

be captured using them? Fortunately, there is no gap. Every truth-function, of
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any finite number of places, may be represented using at most the three connec-

tives:,^,_. To see how, we return to the two-place functions. In the last exercise,

they were all expressed in terms of :, ^, _, !, $, but perhaps in a haphazard

manner. Now we do it using just :, ^, _, in a systematic fashion. Take an

arbitrary two-place truth-function fi, say f3, with its table:

Table 8.4 Sample two-place truth-table.

a b f3(a,b)

1 1 1

1 0 1

0 1 0

0 0 1

Take the rows in which fi(a,b) ¼ 1 { there are three of them in this instance.

For each such row, form the conjunction �a^�b where � is empty or negation

according as the argument has 1 or 0. This gives us the three conjunctions a^b (for

the first row), a^:b (for the second row), and :a^:b (for the fourth row). Form

their disjunction: (a^b)_(a^:b)_(:a^:b). Then this will express the same

truth-function f3.

Why? By the table for disjunction, it will come out true just when at least one

of the three disjuncts is true. But the first disjunct is true in just the first row, the

second is true in just the second row, and the third is true in just the last row. So

the constructed expression has exactly the same truth-table as f3, i.e. it expresses

that truth-function.

EXERCISE 8.3.4

(a) Of the 16 two-place truth-functions, there is one that does not have a

full disjunctive normal form of the kind described. Which is it? Show

how we can still represent it using :, ^, _.

(b) Draw a truth-table for some three-place truth-function, and express it

using :, ^, _ in the same way.

Thus every truth-function may be expressed using only the connectives

:, ^, _. Have we reached the limit, or can we do the job with even fewer

connectives? We will return to this question after clarifying some fundamen-

tal concepts.
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8.4 Tautologicality

A special feature of logic, as compared with most other parts of mathematics, is

the very careful attention that it gives to the language in which it is formulated.

Whereas the theory of trees, say, is about certain kinds of abstract structure {

arbitrary sets equipped with a relation satisfying a certain condition { logic is

about the interconnections between certain kinds of language and structures that

may be used to interpret them. A good deal of logic thus looks at the language as

much as at the structures in which it is interpreted. This can take quite some time

to get used to, since ordinarily in mathematics we look through the language at the

structures alone.

8.4.1 The Language of Propositional Logic

Our language should be able to express all truth-functions. Since we know that

the trio :, ^, _ are together sufficient for the task, we may confine ourselves to

them. They are the connectives of the language. We take some stock of expres-

sions p1, p2, p3,. . ., understood intuitively as representing propositions, and call

them elementary letters (in some texts: propositional variables). This set may be

finite or infinite; the usual convention is to take it either as finite but of unspecified

cardinality, or as countably infinite. As subscripts are a pain, we usually write

elementary letters as p,q,r,. . .

The formulae of our language are expressions that can be obtained recursively

from elementary letters by applying connectives. If the chapter on recursion and

induction has not been forgotten entirely, it should be clear what this means: the

set of formulae is the least set L that contains all the elementary letters and is

closed under the connectives, i.e. the intersection of all such sets. That is, when-

ever a2L then (:a)2L, and whenever a,b2L then so is each of (a^b) and (a_b).

Only expressions that can be formed in a finite number of such steps are counted

as formulae.

In the chapter on trees we have already seen why brackets are needed in

formulae. For example, we need to be able to distinguish ((p^q)_r) from

(p^(q_r)) and likewise (:(p^q)) from ((:p)^q). We have also seen how the

brackets may in principle be dispensed with if we adopt a prefix (Polish) or postfix

(reverse Polish) notation, and have learned how to draw the syntactic decom-

position tree of a formula. We have also agreed to make reading easier by omitting

brackets when this can be done without ambiguity (e.g. omitting the outermost

brackets, which we will always do) or when the ambiguity is resolved by standard

grouping conventions (e.g. reading :p^q as (:p)^q rather than as :(p^q).
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EXERCISE 8.4.1

For revision, draw the syntactic decomposition trees of the two formulae

(p^q)_r and p^(q_r), and also write each of them in both Polish and in

reverse Polish notation. Likewise for the formulae :(p^q) and (:p)^q.

With this out of the way, we can get down to more serious business, defining

the fundamental concepts of classical propositional logic.

8.4.2 Assignments and Valuations

An assignment is a function v: E!f1,0g on the set E of elementary letters of the

language into the two-element set f1,0g. Roughly speaking, assignments corre-

spond to left-hand parts of rows of a truth-table. By structural induction on

formulae, it follows that for each assignment v: E!f1,0g there is a unique

function vþ: L!f1,0g, where L is the set of all formulae, that agrees with v on E

(that is, vþ(p) ¼ p for every elementary letter p) and also satisfies the truth-table

conditions, i.e. v(:a)¼ 1 iff v(a)¼ 0, v(a^b)¼ 1 iff v(a)¼ v(b)¼ 1, and v(a_b)¼ 0

iff v(a) ¼ v(b) ¼ 0. Such a vþ is called a valuation of formulae. Following the

editorial maxim of minimizing notational fuss, we almost always ‘abuse notation’

by dropping the superscript from vþ and writing it too as v.

We are interested in a group of notions that may be called the tautologicality

concepts. There are four basic ones. Two are relations between formulae: tauto-

logical implication, tautological equivalence. The other two are properties of

formulae: those of being a tautology and of being a contradiction. They are

intimately linked to each other.

8.4.3 Tautological Implication

We begin with the relation of tautological implication. Let A be a set of formulae,

and b an individual formula. We say that A tautologically implies b (or: b is a

tautological consequence of A) and write A j- b iff there is no valuation v such that

v(a)¼ 1 for all a2A but v(b)¼ 0. In other words, for every valuation v, if v(a)¼ 1

for all a 2 A then v(b) ¼ 1. When A is a singleton fag, this says: a j- b iff v(b) ¼
1 whenever v(a) ¼ 1. Note that we do not require the converse.

In terms of truth-tables for the singleton case a j- b, this means if we draw up a

truth-table that covers all the elementary letters that occur in a or in b (for they

might not have exactly the same letters in them), then every row which has a 1

under a also has a 1 under b. For the case where the premise set is more than a
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singleton, the check is the same except that we consider the rows in which there is

a 1 under all of the a 2 A.

Warning: The symbol j- is not one of the connectives of propositional logic like

:, ^, _,!,$. Whereas p!q is a formula of the language L of propositional logic,

p j- q is not. Rather, j- is a symbol that we use when talking about formulae of

propositional logic. In handy jargon, we say that it belongs to our metalanguage

rather than to the object language. This distinction takes a little getting used to,

but it is very important. Neglect can lead to inextricable confusion.

Here is a table of some of the more important tautological implications, with their

usual names (some going back a thousand years). Most have a singleton premise set.

When two formulae are separated by a comma, they form a two-element premise set.

Thus, for example, the premise set for modus ponens is the pair fa, a!bg.

Table 8.5 Some important tautological implications.

Name LHS RHS

Simplification a^b a
a^b b

Conjunction a, b a^b
Disjunction a a_b

b a_b
Modus Ponens a, a!b b
Modus Tollens :b, a!b :a
Disjunctive Syllogism a_b, :a b
Transitivity a!b, b!g a!g
Material implication b a!b

:a a!b
Limiting cases a^:a any formula

any formula b_:b

We check that modus tollens is a tautological implication, by using a truth-table.

Table 8.6 Verification of modus tollens.

p q p! q : q : p

1 1 1 0 0

1 0 0 1 0

0 1 1 0 1

0 0 1 1 1

The four assignments are given in the left part of the table. The resulting values

of p!q, :q, :p are calculated step by step, from the inside to the outside (one

might also say from the bottom up), i.e. from the leaves of the syntactic decom-

position trees for the three formulae to their roots (very short trees in this case).
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Is there a row in which the two premises p!q, :q get 1 while the conclusion:p gets

0? No, so the premises tautologically imply the conclusion.

Alice Box: Elementary letters vs arbitrary formulae

Alice: Wait a moment! In the list of tautological implications, you used the

symbols a, b which are meant to range over arbitrary formulae of your

language. So modus ponens says that for all formulae a, b, the premise-set

f:b, a!bg tautologically implies the conclusion :a. In other words, :a is a

tautological consequence of f:b, a!bg. But in your truth-table, you showed

this only for the special case that a, b are elementary letters p, q. Isn’t this a bit

too fast?

Hatter: Nice point! Indeed, it was a bit fast. But it is legitimate. This is

because of a very important theorem about tautological consequence. When-

ever a tautological implication holds, and we make a substitution uniformly

through premises and conclusion, then the tautological implication still holds.

In our example of modus tollens, given that f:q, p!qg tautologically implies

:p where p,q are elementary letters, we know that for arbitrary formulae a
and b, the premise-set f:b, a!bg tautologically implies :a.

Alice: Proof?

Hatter: Let’s get back to it a bit later in the chapter. We will need to give a

recursive definition of what a substitution function is, so that we may then

build an inductive proof to ride on it.

EXERCISE 8.4.2

(a) Draw truth-tables to check out each of disjunctive syllogism, transitiv-

ity, and the two material implication consequences.

(b) Check the two limiting cases (choosing your own formulae in each

case), and also explain in general terms why they hold.

(c) Verify that tautological consequence satisfies the three structural

Tarski conditions given earlier in the chapter. Hint: Your verifications

will be like those given in general terms then, but based specifically on

the definition of tautological implication.

Once understood, the entries in Table 8.5 should be committed firmly to

memory.
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8.4.4 Tautological Equivalence

In a tautological implication such as disjunction, a j- a_b, while the left implies

the right, the converse does not in general hold: p_q j-/ p when p, q are distinct

elementary letters, although a_b j- a does of course hold for some choices of a, b.

EXERCISE 8.4.3

Show the former and give an example of the latter.

When each of two formulae tautologically implies the other, we say that the

two are tautologically equivalent. That is, a is tautologically equivalent to b, and

we write a -jj- b, iff both a j- b and b j- a. Equivalently: a -jj- b iff v(a) ¼ v(b) for

every valuation v.

In terms of truth-tables: when we draw up a truth-table that covers all the

elementary letters that occur in a or in b (again, they might not have exactly the

same letters in them), we require that the column for a comes out exactly the same

as the column for b.

Once again, the symbol -jj- does not belong to the object language, but is part

of our metalanguage.

Here is a table of the most important tautological equivalences that can be

expressed in up to three elementary letters. They should also be committed to

memory after being understood.

Table 8.7 Some important tautological equivalences.

Name LHS RHS

Double negation a ::a
Commutation for ^ a^b b^a
Association for ^ a^(b^g) (a^b)^g
Commutation for _ a_b b_a
Association for _ a_(b_g) (a_b)_g
Distribution of ^ over _ a^(b_g) (a^b)_(a^g)

Distribution of _ over ^ a_(b^g) (a_b)^(a_g)

Absorption a a^(a_b)

a a_(a^b)

Expansion a (a^b)_(a^:b)

a (a_b)^(a_:b)

De Morgan :(a^b) :a_:b
:(a_b) :a^:b
a^b :(:a_:b)

a_b :(:a^:b)

Contraposition a!b :b!:a
a!:b b!:a
:a!b :b!a
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Table 8.7 (continued)

Name LHS RHS

Import/export a!(b!g) (a^b)!g
a!(b!g) b!(a!g)

Consequentia mirabilis

(miraculous consequence)

a!:a :a
:a!a a

Commutation for$ a$b b$a
Association for$ a$(b$g) (a$b)$g
: through$ :(a$b) a$:b
Connective translations a$b (a!b)^(b!a)

a$b (a^b)_(:a^:b)

a!b :(a^:b)

a!b :a_b
a_b :a!b

Translations of negations :(a!b) a^:b
:(a^b) a!:b
:(a$b) (a^:b)_(b^:a)

EXERCISE 8.4.4

(a) Draw truth-tables to verify one of the de Morgan equivalences, one of

the distribution principles, and association for$.

(b) Verify the ‘: through$’ equivalence in words, without writing out the

table.

(c) An interesting feature of absorption, unlike the other equivalences

listed in the table, is that the left will in general have fewer elementary

letters than the right. Find two formulae that have no elementary

letters in common but which are nevertheless tautologically equivalent.

Comment on anything special you notice about them.

(d) Show from the definition that tautological equivalence is indeed an

equivalence relation.

(e) Show that tautological equivalence is a congruence relation with

respect to the propositional connectives, in the sense that whenever a
-jj- a0 and b -jj- b0 then :a, a^b, a_b are respectively equivalent to :a0,
a0^b0, a0_b0.

(f) Consider the following replacement property. Let a be a formula,

occurring as a subformula of g. Suppose a -jj- a0. Let g0 be formed by

replacing this occurrence of a by a0. Show that g -jj- g0. Hint: this is not

as complicated as it sounds. It expresses the idea that we may inter-

change equivalent subformulae without loss of equivalence. Give two
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examples of the application of this property, and then sketch a proof of

it, using the fact, already shown, that -jj- is a congruence relation.

We saw analogues of many of these equivalences in the chapter on sets.

For example, the de Morgan principles took the form of identities between

sets: {(A\B) ¼ {A[{B, {(A[B) ¼ {A\ {B, A\B ¼ {({A[{B), and

A[B ¼ {({A\ {B), where A,B,C are arbitrary sets and { is complementation

with respect to some local universe. This is not surprising: intersection, union

and complementation of sets are defined using ‘and’, ‘or’ and ‘not’ respec-

tively. There is thus a systematic correspondence between tautological equiv-

alences and Boolean identities between sets. Similarly, there is a

correspondence between tautological implications, such as those in Table

8.5, and inclusions between sets.

The de Morgan equivalences answer a question that we posed at the end

of Section 8.2, about the connectives needed to be able to express all truth-

functions. They may all be represented using just :, ^, since from those two

we can get _ by the last of the four de Morgan equivalences, and we already

know that with that trio we may obtain all the others. Likewise, the pair :,

_ suffices to express all possible truth-functions, via the third de Morgan

equivalence.

EXERCISE 8.4.5

(a) Use information from the list of equivalences to show that the pair :,!
is enough to express all truth-functions.

(b) None of the three connectives :, ^, _ taken alone is sufficient to

generate all truth-functions. However, there are just two among the

16 two-place truth-functions which can do the job alone. Go through

the table for all these sixteen truth-functions that was constructed in

an exercise for Section 8.3, use your intuition to pick likely candidates,

and check that they do the job. Hint: First try to express :, and then

try to express either ^ or _. If you succeed, you are done, for we know

that negation and either one of conjunction, disjunction suffices. If you

fail, try another candidate.

The concept of tautological equivalence may evidently be lifted to a relation

between sets of formulae. If A, B are sets of formulae, we say that they are

tautologically equivalent and write A -jj- B iff A j- b for all b 2 B and also B j- a
for all a 2A. Equivalently: for every valuation v, v(a)¼ 1 for all a 2A iff v(b)¼ 1

for all b 2 B.
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EXERCISE 8.4.6

(a) Check that tautological equivalence between sets of formulae is also an

equivalence relation, and that singleton sets are equivalent iff their

respective elements are so.

8.4.5 Tautologies and Contradictions

Now that we have the relations of tautological implication and equivalence under

our belt, the properties of being a tautology, contradiction, or contingent are

child’s play. Let a be any formula.

l We say that a is a tautology iff v(a)¼ 1 for every valuation v. In other words: iff

a comes out with value 1 in every row of its truth-table.

l We say that a is a contradiction iff v(a) ¼ 0 for every valuation v. In other

words: iff a comes out with value 0 in every row of its truth-table.

l We say that a is contingent iff it is neither a tautology nor a contradiction. In

other words: iff v(a) ¼ 1 for some valuation v and also v(a) ¼ 0 for some

valuation v.

Clearly, every formula is either a tautology, or a contradiction, or contingent,

and only one of these. In other word, these three sets partition the set of all

formulae into three cells.

EXERCISE 8.4.7 (WITH SOLUTION)

Classify the following formulae as tautologies, contradictions, or contin-

gent: (i) p_:p, (ii) :(p_:p), (iii) p_:q, (iv) :(p_:q), (v) (p^(:p_q))!q,

(vi) :(p_q)$(:p^:q), (vii) p^:p (viii) p!:p, (ix) p$:p, (x)

(r^s)_:(r^s), (xi) (r!s)$:(r!s).

Solution: Tautologies: (i), (v), (vi), (x), Contradictions: (ii), (vii), (ix). (xi).

Contingent: (iii), (iv), (viii).

If you went through this exercise conscientiously, you will already have sensed

many general lessons.

l A formula is a tautology iff its negation is a contradiction. Example: (i) and (ii).

l A formula is contingent iff its negation is contingent. Example: (iii) and (iv).

8.4 Tautologicality 237



l We have a j- b iff the formula a!b is a tautology. More generally, fa1,. . .,

ang j- b iff the formula (a1^. . .^an)!b is a tautology. Example: the

consequence fp, :p_qg j- q (disjunctive syllogism) corresponds to the

formula (v).

l We have a -jj- b iff the formula a$b is a tautology. Example: the

tautological equivalence :(p_q) -jj- (:p^:q) (de Morgan) corresponds to

the formula (vi).

EXERCISE 8.4.8

Prove each of the bulleted points from the definitions.

Examples (x) and (xi) of the penultimate exercise are also instructive.

The former tells us that (r^s)_:(r^s) is a tautology. Without making a

truth-table, we can see that it must be so since it is merely a substitution

instance of the tautology p_:p. Likewise, (r!s)$:(r!s) is a contradiction,

being a substitution instance of the contradiction p$:p. Quite generally, we

have the principle:

l Every substitution instance of a tautology or a contradiction is a tautology or

contradiction, respectively.

On the other hand, not every substitution instance of a contingent formula is

contingent. For example, we saw that p_:q is contingent, but its substitution

instance p_:p (formed by substituting p for q) is a tautology, while another of its

substitution instances (p^:p)_:(q_:q), formed by substituting p^:p for p and

q_:q for q, is a contradiction.

This notion of a substitution in propositional logic can be given a very precise

mathematical content. A substitution function is a function �: L!L, where L is

the set of all formulae, satisfying the following homomorphism conditions:

�ð:aÞ ¼ :�ðaÞ

�ða ^ bÞ ¼ �ðaÞ ^ �ðbÞ

�ða _ bÞ ¼ �ðaÞ _ �ðbÞ

Note that in this definition, ¼ is not just tautological equivalence, it is full

identity between formulae, i.e. the left and right sides stand for the very same

formula. It is easy to show, by structural induction on the definition of a formula

of propositional logic, that a substitution function is uniquely determined by its

values for elementary letters.
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EXERCISE 8.4.9 (WITH PARTIAL SOLUTION)

(a) Suppose �(p)¼ q^:r, �(q)¼ :q, �(r)¼ p!s. Identify the formulae (i)

�(:p), (ii) �(p_:q), (iii) �(r_(q!r)).

(b) Treating a!b and a$b as abbreviations for :(a^:b) and

(a^b)_(:a^:b) respectively, show that substitution functions satisfy

analogous homomorphism conditions for them too.

Solution to (a): (i) �(:p) ¼ :�(p) ¼ :(q^:r), (ii) �(p_:q) ¼ �(p)_�(:q)

¼ �(p)_:�(q) ¼ (q^:r)_::q. For (iii), omitting the intermediate calcula-

tions, �(r_(q!r)) ¼ (p!s)_(:q!(p!s)).

Comment: Note that in e.g. (ii), �(p_:q) is obtained by simultaneously

substituting �(p) for p and �(q) for q. If we were to replace serially,

substituting �(p) for p to get (q^:r)_:q and then substituting �(q) for q,

we would get the different result (:q^:r)_::q. Substitution as defined is

always understood to be simultaneous.

We are now in a position to prove the claim that every substitution instance of

a tautology is a tautology or, as we also say, the set of all tautologies is closed

under substitution. Let a be any formula, and � any substitution function.

Suppose that �(a) is not a tautology. Then there is a valuation v such that

v(�(a)) ¼ 0. Let v0 be the valuation defined on the letters in a by putting v0(p)

¼ v(�(p)). Then it is easy to verify by structural induction that for every formula

b, v0(b) ¼ v(�(b)). In particular, v0(a) ¼ v(�(a)) ¼ 0, so that a is not a tautology.

Likewise, the set of all contradictions, and the relations of tautological equiva-

lence and tautological implication are closed under substitution. That is, for any

substitution function �:

l Whenever a is a contradiction then �(a) is too

l Whenever a -jj- b then �(a) -jj- �(b)

l Whenever a j- b then �(a) j- �(b)

l Whenever A j- b then �(A) j- �(b) for any substitution function �.

Here A is any set of formulae, and �(A) is defined, as you would expect from the

chapter on functions, as f�(a): a 2 Ag.

EXERCISE 8.4.10 (WITH PARTIAL SOLUTION)

Complete the details of the verification that the set of all tautologies is

closed under substitution.
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8.5 Normal Forms, Least Letter-Sets, Greatest
Modularity

The formulae of propositional logic can be of any length, depth or level of

complexity. It is thus very important to be able to express them in the most

transparent possible way. In this section we will look briefly at two kinds of

normal form and two kinds of letter management. The two normal forms focus

on the role of the connectives, allowing them to be applied in a predetermined

order. Of the two kinds of letter management, one gets rid of all redundant letters,

while the other modularizes their interaction as much as possible.

8.5.1 Disjunctive Normal Form

In logic, mathematics and computer science, a normal form (also often referred to

as canonical form) for an expression is another one, equivalent to the first, but

with a nice simple structure. A normal form theorem is one telling us that every

expression (from some broad category) has a normal form (of some specified kind).

In propositional logic, the best-known such form is disjunctive normal form,

abbreviated dnf. To explain it, we need the concepts of a literal and of a basic

conjunction.

A literal is simply an elementary letter or its negation. A basic conjunction is

any conjunction of (one or more) literals in which no letter occurs more than once.

Thus we do not allow repetitions of a letter, as in p^q^p, nor repetitions of the

negation of a letter, as in :p^q^:p, nor a letter occurring both negated and

unnegated, as in :p^q^p. We write a basic conjunction as �p1^. . .^�pn, where

the � indicate the presence or absence of a negation sign.

A formula is said to be in disjunctive normal form (dnf) iff it is a disjunction of

basic conjunctions. It is said to be a full dnf of a formula a iff every letter of a
occurs in each of the (one or more) basic conjunctions.

EXERCISE 8.5.1 (WITH SOLUTION)

(a) Which of the following are in disjunctive normal form? When your

answer is negative, explain briefly why. (i) ((p^q)_:r)^:s, (ii)

(p_q)_(q!r), (iii) (p^q)_(:p^:q), (iv) (p^q)_(:p^:q^p), (v)

(p^q)_(:p^:q^:p), (vi) p^q^r, (vii) p, (viii) :p, (ix) p_q, (x) p_:p,

(xi) p^:p.

(b) Which of the above are in full dnf?
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Solution:

(a) No: there is a disjunction inside a conjunction, (ii) no: we have not

eliminated!, (iii) yes, (iv) no: :p^:q^p contains two occurrences of p

and so is not a basic conjunction, (v) no: :p^:q^:p contains two

occurrences of p, (vi) yes, (vii) yes, (viii) yes, (ix) yes, (x) yes, (xi) no:

p^:p has two occurrences of p.

(b) (iii), (vi), (vii), (viii), (x).

How can we find a disjunctive normal form for an arbitrarily given formula a?

There are two basic algorithms. One is semantic, proceeding via a truth-table for

a. The other is syntactic, using successive transformations of a, justified by

tautological equivalences from our table of basic equivalences.

The semantic construction is the simpler of the two. In fact we already made

use of it in Section 8.3, when we showed that the trio :,^,_ suffice for expressing

all truth-functions. We begin by drawing up the truth-table for a, and checking

whether it is a contradiction. Then:

l In the principal case that a is not a contradiction, the dnf of a is the disjunction

of the basic conjunctions corresponding to the rows of the table in which a
receives value 1.

l In the limiting case that a is a contradiction, i.e. when there are no such rows,

the formula does not have a dnf.

It is clear from the construction that every non-contradictory formula has a

disjunctive normal form. It is also clear that the dnf obtained is unique up to the

ordering and bracketing of literals and basic conjuncts. Moreover, it is clearly

full.

EXERCISE 8.5.2

Find the full disjunctive normal form (if it exists) for each of the following

formulae, using the truth-table algorithm above: (i) p$q, (ii) p!(q_r), (iii)

:[(p^q)!:(r_s)], (iv) p!(q!p), (v) (p_:q)!(r^:s), (vi) (p_:p)!(r^:r).

For the syntactic method, we start with the formula a and proceed by a series

of transformations that massage it into the desired shape. The basic idea is fairly

simple, although the details are rather fussy. The following steps of the algorithm

should be executed in the order given.

l Translate the connectives! and$ (and any others in the language, such as

exclusive disjunction) into :, ^, _ using translation equivalences such as those

in Table 8.6.
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l Use the de Morgan rules :(a^b) -jj- :a_:b and :(a_b) -jj- :a^:b
iteratively, to move negation signs inwards until they act directly on

elementary letters, eliminating double negations as you go by the rule

::a -jj- a.

l Use the distribution rule a^(b_g) -jj- (a^b)_(a^g) to move all conjunctions

inside disjunctions.

l Use absorption and idempotence, with help from commutation and associa-

tion, to eliminate repetitions of letters or of their negations.

l Delete all basic conjunctions containing a letter and its negation.

This will give us as output a formula in disjunctive normal form, except when

a is a contradiction, in which case it turns out that the output is empty. However,

the dnf obtained in this way is rarely full: there may be basic conjunctions with

less than the full baggage of letters occurring in them.

EXERCISE 8.5.3

(a) Use the syntactic algorithm to transform the formula (p_:q)!(r^:s)

into disjunctive normal form. Show your transformations step by step,

and compare the result with that obtained by the semantic method in

the preceding exercise.

(b) How might you transform the dnf obtained above into a full one? Hint:

make use of the tautological equivalence of expansion, a -jj-
(a^b)_(a^:b).

8.5.2 Conjunctive Normal Form

Conjunctive normal form is like disjunctive normal form but ‘upside-down’: the

roles of disjunction and conjunction are reversed. Technically, they are called

duals of each other.

A basic disjunction is defined to be any disjunction of (one or more) literals in

which no letter occurs more than once. A formula is said to be in conjunctive

normal form (cnf) iff it is a conjunction of (one or more) basic disjunctions, and

this is said to be a full conjunctive normal form of a iff every letter of a occurs in

each of the basic disjunctions.

Cnfs may also be constructed semantically, syntactically, or by piggybacking

on dnfs. For the semantic construction, we look at the rows of the truth-table that
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give a the value 0. For each such row we construct a basic disjunction: this will be

the disjunction of those letters with the value 0 and the negations of the letters

with value 1. We then conjoin these basic disjunctions. This will give an output in

conjunctive normal form except when the initial formula a is a tautology. For the

syntactic construction, we proceed just as we do for dnfs, except that we use the

other distribution rule a_(b^g) -jj- (a_b)^(a_g) to move disjunctions inside

conjunctions.

Alice Box: Conjunctive normal form

Alice: OK, I see what we are doing, but I don’t see why we are doing it. Why do we

construct the cnf from the table the way described? What is the underlying idea?

Hatter: We want to exclude the valuations that make a false. To do that, we

take each row that gives a the value 0, and declare it not to hold. This is the

same as negating the basic conjunction of that row, and by de Morganizing

that negation we get the basic disjunction described. In effect, the basic

disjunction says ‘not this row’.

Alice: Why should we bother with cnfs when we already have dnfs? They are

much less intuitive!

Hatter: They have been found useful in a discipline known as logic program-

ming, for two reasons. First, a conjunction of basic disjunctions may be rewrit-

ten, without loss of equivalence, as a set of them, which helps us break problems

down into smaller pieces. Second, in the special case of a basic disjunction with

just one unnegated letter, say (:p1_. . .:pn)_q (n � 0), we may express it

equivalently as a positive implication (p1^. . .^ pn)!q, understood as just the

letter q in the limiting case that n ¼ 0. If we have a set of these, we can

programme a computer to derive conclusions simply by successive applications

of modus ponens. But that takes us far beyond our present concerns.

We can also construct a cnf for a formula a by piggy-backing on a dnf for its

negation :a. Given a, construct a dnf of its negation :a, by whatever method you

like. This will be a disjunction b1_. . ._bn of basic conjunctions bi. Negate it,

getting :(b1_. . ._bn), which by double negation is evidently tautologically

equivalent to a. We can then use de Morgan to push all negations inside, getting

:b1^. . .^:bn. Each :bi is of the form :(�p1^. . .^�pn), so we can apply de

Morgan again, with double negation as needed, to express it as a disjunction of

literals, as desired. If you compare this ‘indirect’ method with the semantic one for

finding a cnf, you can see how it is doing much the same thing, without looking

directly at a truth-table.
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EXERCISE 8.5.4

(a) Take again the formula (p_:q)!(r^:s), and find a cnf for it by all

three methods: (i) semantic, (ii) successive syntactic transformations,

(iii) the indirect method.

(b) Evidently, in most cases a formula that is in dnf will not be in cnf. But in

some limiting cases it will be in both forms. When can that happen?

(c) Check that :p1_. . .:pn_q -jj- (p1^. . .^ pn)!q.

8.5.3 Eliminating Redundant Letters

A formula of propositional logic may contain redundant letters. We have already

seen an example in the table of important equivalences: absorption tells us that

p^(p_q) -jj- p -jj- p_(p^q); the letter q is thus redundant in each of the two

outlying formulae. The expansion equivalences in the same table give another

example. So does the equivalence (p!q)^(:p!q) -jj- q, not in the table.

Suppose we expand our language a little to admit a zero-ary connective ?
(called bottom), so that ? is a formula with no elementary letters. We stipulate

that it receives the value 0 under every valuation. We also stipulate that �(?) ¼
? for any substitution function �.

Then contradictions like p^:p and tautologies like p_:p will also have

redundant letters, since p^:p -jj- ? and p_:p -jj- :?. For our discussion of

redundancy, we will assume that our language contains ? as well as the ordinary

elementary letters, as it will streamline formulations.

It is clear that for every formula a containing elementary letters p1,..,pn (n � 0)

there is a minimal set of letters in terms of which a may equivalently be expressed.

That is, there is some minimal set F of letters such that a-jj-a0 for some formula a0 all

of whose letters are drawn from F. This is because a contains only finitely many

letters to begin with, and so (by induction) as we eliminate redundant letters we must

eventually come to a set (perhaps empty) from which no more can be eliminated.

But is this minimal set unique? In other words, is there a least such set { one that is

included in every such set? In general, as noted in an exercise at the end of the chapter

on relations, minimality does not in general imply leastness. However, in the present

context, intuition suggests that surely there should be a least letter-set. And in this

case intuition is right, although the proof is a little too advanced to give in this text.

In other words, we have the following theorem: For every formula a there is a

unique least set Ea of letters having the property that a -j j- a0 for some formula a0

all of whose letters are drawn from Ea. This set Ea is known as the least letter-set

for a, and any formula a0 built from those letters and equivalent to a is known as a
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least letter-set version of a. The same considerations apply for arbitrary sets of

formulae, even when they are infinite: each set A of formulae has a unique least

letter-set.

It is possible to construct algorithms to find a least letter-set version of any

formula, although they will in general be horribly exponential. For human work

with small examples, we can use our experience with truth-functional formulae to

inspire our guessing, backing this up by checking, as in the following exercise.

EXERCISE 8.5.5 (WITH SOLUTION)

(a) Find a least letter-set version for each of the following formulae:

(i) p^:p, (ii) (p^q^r)_(p^:q^r), (iii) (p$q)_(p$r)_(q$r).

(b) Do the same for the following sets of formulae: (i) fp_q_r, p_:q_rg,
(ii) fp!q, p!:qg.

(c) True or false? ‘The least letter-set of a finite set of formulae is the same

as the least letter-set of the conjunction of all of its elements’. Explain.

Solution:

(a) (i) ?, (ii) p^r, (iii) :?. (b) (i) p^r, (ii) :p. (c) True: A finite set of

formulae is tautologically equivalent to the conjunction of all of its

elements, so the formulae that are equivalent to the former are the same

as those equivalent to the latter.

8.5.4 Most Modular Representation

The next kind of simplification is rather more subtle. It leads us to a representation

that does not change the letter-set, but makes their role as modular as possible. The

definition makes essential use of the notion of a partition, and you are advised to

review the basic theory of partitions in the chapter on relations before going further.

Consider the formula set A ¼ f:p, r!((:p^s)_q), q!pg. This has three

formulae as elements. Between them the formulae contain four elementary letters

p, q, r, s. None of these letters is redundant { the least letter-set is still fp, q, r, sg. But

the way in which the letters occur in formulae in A is unnecessarily ‘mixed up’: they

can be separated out rather better from each other. In other words, we can make the

presentation of A more ‘modular’, without reducing the set of letters involved.

Observe that A is tautologically equivalent to the set A0 ¼ f:p, r!s, :qg. We

have not eliminated any letters, but we have disentangled their role in the set. In

effect, we have partitioned the letter set fp, q, r, sg of A into three cells fpg, fr,sg,
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fqg, with each formula in A0 drawing all its letters from a single cell of the

partition. Thus the formula :p takes its sole letter from the cell fpg; r!s draws

its letters from the cell fr,sg; and :q takes its letter from the cell fqg. We say that

the partition ffpg, fr,sg, fqgg of the letter-set fp, q, r, sg is a splitting of A.

In general terms, here is the definition. Let A be any set of formulae, with E the

set of all its elementary letters. A splitting of A is a partition of E such that A is

tautologically equivalent to some set A0 of formulae, such that each formula in A0

takes all of its letters from a single cell.

Now, as we saw in the chapter on relations, partitions of a set can be compared

according to their fineness. Consider any two partitions of the same set. One

partition is said to be at least as fine as another iff every cell of the former is a

subset of some cell of the latter. This relation between partitions is a partial

ordering (in the sense defined in the chapter on relations: reflexive, transitive,

antisymmetric). As we also saw in the exercises at the end of that chapter, one

partition is at least as fine as another iff the equivalence relation corresponding to

the former is a sub-relation of that corresponding to the latter.

Since a splitting is a special kind of partition, it makes sense to compare

splittings according to their fineness. Thus the three-cell splitting ffpg, fr,sg,
fqgg mentioned above is finer than the two-cell splitting ffp,qg, fr,sgg corre-

sponding to the formula set A0 ¼ f:p^:q, r!sg equivalent to A; and this is in

turn finer than the one-cell splitting ffp, q, r, sgg corresponding to A itself.

It turns out that each set A of formulae has a unique finest splitting of its letter-

set. In the case of our example, it is the three-cell partition given. The four-cell

partition ffpg, frg, fsg, fqgg is finer { but it is not a splitting of A, since there is no

equivalent set A00 of formulae, each of which draws its letters from a single cell of

this partition (so that each formula in A00 contains only a single letter).

Any formula set A0 equivalent to A, using the same letters as A, but with the

letters in each formula of A0 taken from a single cell of the finest splitting of A, is

called a finest splitting version of A.

Strictly speaking, the definition above covers only the principal case that there

is some elementary letter in some formula of A. For in the limiting case that there

are no elementary letters, i.e. that E ¼ ˘, the notion of a partition of E is not

defined. However, in this case A must be tautologically equivalent either to ? or

to :? (as can be shown by an easy structural induction) and it is convenient to

take that as the finest splitting version of A.

Thus a finest splitting version of a set of formulae disentangles as much as

possible the roles that are played by the different elementary letters. It makes the

presentation of the set as modular as possible: we have reached the finest way of

separating the letters such that no formula contains letters from two distinct cells.

The finest splitting versions of A may thus also be called the most modular

presentations of A. They could also be called the minimal mixing versions of A.
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Whereas the idea of the least letter-set of a set of formulae is quite old, perhaps

dating back as far as the nineteenth century, that of the finest splitting is

surprisingly new. It was first formulated and verified for the finite case by Rohit

Parikh in 1999; a proof of uniqueness for the infinite case was given only in 2007!

As for finding least letter-set versions, any general algorithm is highly expo-

nential. So for small examples to be analysed by hand, we again use experience

with truth-functional formulae to inspire our guessing and follow it up by check-

ing, in the following exercise.

EXERCISE 8.5.6 (WITH SOLUTION)

Find most modular versions for the following two sets of formulae: A ¼
fp^q^rg, B ¼ fp!q, q!r, r!:pg. Remember: you are not eliminating

redundant letters (indeed, in these instances no letters are redundant); you

are splitting the existing letter-set.

Solution with comments: A most modular version of A would be A0 ¼ fp, q,

rg. Comment: A is a singleton, and its unique element is a conjunction. We

have simply broken the conjunction into its separate conjuncts, giving us

the finest splitting ffpg, fqg, frgg with singleton cells.

A most modular version of B would be B0 ¼ f:p, q!rg. Comment: The

splitting given by B itself was the one-cell partition ffp,q,rgg, while B0 gives

us the finer two-cell partition ffpg, fq, rgg.

Finally, we note that there is nothing to stop us combining these two kinds of

letter management. Given a set A of formulae we can first eliminate redundant

letters, getting it into least letter-set form A0, and then work on that to modularize

the representation, obtaining a most modular version A00of the least letter-set

version. We can then go on, if we wish, to express the separate formulae a 2A00 in

dnf or in cnf.

8.6 Semantic Decomposition Trees

By now, you are probably sick of drawing up truth-tables, even small ones of four

or eight rows, to test for the various kinds of tautologicality (tautological con-

sequence and equivalence, tautologies and contradictions). Indeed, you may have

tried some informal shortcuts to do the job. The final sections of this chapter show

how shortcuts can be used systematically and in good conscience to great advan-

tage. We sketch two well-known methods:
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l A semantic one (i.e. formulated in terms of truth-values), that is two-sided, in

the sense that it gives a way of determining whether or not a formula is e.g. a

tautological consequence of others. As applications of the method always termi-

nate in a finite time, this means that it supplies us with a decision procedure for

tautologicality. It is called the method of semantic decomposition trees (also

known as semantic tableaux), and will be explained in this section.

l A syntactic one (i.e. without direct reference to truth-values), that is one-

sided, in the sense that it can eventually (and sometimes quickly) give a

positive answer. But never, by itself, gives a negative one. Thus it does not

provide a decision procedure, but has other advantages. This is the method of

natural deduction, with its two components enchainment and second-level

(alias indirect) inference. It will be sketched in the following section.

We begin with an example. We already know that the formula

a ¼ :(p^q)!(:p_:q) is a tautology, but let’s check it without making a table.

Suppose that v(a)¼ 0 for some valuation v. Then v(:(p^q))¼ 1 while v(:p_:q)¼
0. From the latter by the table for disjunction, v(:p) ¼ 0 and v(:q) ¼ 0, so by the

table for negation, v(p)¼ 1 and v(q)¼ 1. On the other hand, since v(:(p^q))¼ 1 we

have v(p^q) ¼ 0 so by the table for conjunction, either v(p) ¼ 0 or v(q) ¼ 0. In the

first case we get a contradiction with v(p)¼ 1 and in the second case a contradiction

with v(q) ¼ 1. Thus the initial supposition that v(a) ¼ 0 is impossible, so

:(p^q)!(:p_:q) is a tautology.

This reasoning can be set out in the form of a labelled tree, as in Figure 8.1.

Note the following features of its construction:

1: q

1: p

0 : q

0 : p

0 : p q

0 : p q

0 : ( ) ( )p q p q

1: ( )p q

0 : q0 : p

dead dead

Figure 8.1 Semantic decomposition tree for :(p^q)!(:p_:q)
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l The root is labelled with the formula that we are testing, together with a

truth value. In our example, we are testing whether a is a tautology, i.e.

whether it is impossible for it to receive value 0, so the label is 0: a. If we

had been testing whether a is a contradiction, the label would have been

1: a.

l At each step we decompose the current formula, passing from information

about its truth-value to resulting information about its immediate subformu-

lae. Never in the opposite direction.

l When we get disjunctive information about the immediate subformulae of j,

we divide our branch into two sub-branches, with one of the alternatives on one

branch and the other alternative on the other.

l When we get definite information about the immediate subformulae of j, we

put it on every branch below the node for j. One way of ensuring this is by

putting it before any further dividing takes place.

Note also the way in which we read our answer from the tree thus constructed.

We make sure that we have decomposed each node in the tree whenever it is

possible, which is whenever it is not an elementary letter. In our example, the ticks

next to nodes keep a record that we have done the decomposition. Then we read

the completed tree as follows:

l If every branch contains an explicit contradiction (two nodes labelled by the

same formula with opposite signs, 1: j and 0: j) then the label of the root is

impossible. This is what happens in our example: there are two branches, one

containing both v(p) ¼ 1 and v(p) ¼ 0, the other containing both v(q) ¼ 1 and

v(q) ¼ 0. We label these branches dead and conclude that v(a) ¼ 0 is impos-

sible, i.e. that a is a tautology.

l On the other hand, if some branch is without explicit contradiction, then the

label of the root is possible. We label these branches ok, and read off any one of

them a valuation that gives the root formula the value indicated in the label.

We give a second example that illustrates the latter situation. Consider the

formula a ¼ ((p^q)!r)!(p!r), and test to determine whether or not it is a

tautology. We get the labelled tree of Figure 8.2.

This decomposition tree contains three branches. The leftmost and rightmost

ones each contain an explicit contradiction (1: p and 0: p in the left one, 0: r and

1: r in the right one) and so we label them dead. The middle branch does not

contain any explicit contradiction. We check carefully that we have completed all

decompositions in this branch { that we have ticked every formula in it other than

elementary letters. We collect from the branch the assignment v(p) ¼ 1, v(r) ¼
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v(q) ¼ 0. This valuation generated by this assignment gives every formula in the

branch its labelled value, and in particular gives the root formula a the labelled

value 0, so that it is not a tautology.

0 : (( ) ) ( )p q r p r

1: r

0 : r

1: p

0 : p q

0 : p r

1: ( )p q r

0 : p 0 : q
dead

dead ok

Figure 8.2 Semantic decomposition tree for ((p^q)!r)!((p!r)

Evidently, this method is algorithmic and can be programmed. It is usually

quicker to calculate (whether by human or by machine) than a full table, although

it must be admitted that in worst-case examples, it turns out to be just as horribly

exponential as a truth-table. However, even in such cases, it is rather more fun to

carry out (for humans, at least).

The construction always terminates: as we go down branches we deal with

shorter and shorter formulae until we reach elementary letters and can decompose

no further. This is intuitively clear: a rigorous proof would be by structural

induction on formulae.

There are many ways in the method can be streamlined to maximize its effi-

ciency. Some gains may be obtained by controlling the order in which decomposi-

tions are carried out. In our second example, after decomposing the root to introduce

the second and third nodes, we had a choice of which of those to decompose first. We

opted to decompose the third node before the second, but we could perfectly well

have done the reverse. Our choice was motivated by the fact that the third node

gives definite information, following a policy of postponing branching for as long as

possible. This is a control heuristic that works well, at least for humans in small finite

examples. Whichever order we follow, we get the same final verdict.

EXERCISE 8.6.1

Reconstruct the semantic decomposition tree for ((p^q)!r)!(p!r),

decomposing the second node before the third one.
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More important as a way of reducing unnecessary work is the fact that we can

sometimes stop constructing the tree before it is finished. If a branch contains an

explicit contradiction before having been fully decomposed, we can already

declare it dead and pass on to other branches. Also, if we have a branch that is

complete in the sense that all nodes on that branch have been decomposed, and it

is free of explicit contradictions, then we can declare that this branch is ok and the

label of the root (and of everything on the branch) is possible, without bothering

to complete any other branches.

In addition to these economies, we can also develop heuristics to guide the

choice which branches to construct first and to what extent, balancing depth-first

and breadth-first strategies. But all of this goes far beyond the limits of this

introduction, and we leave it aside. Tables 8.8 and 8.9 recapitulate the definite

and disjunctive decompositions that one may make with the various truth-func-

tional connectives. Their justification is immediate from the truth-tables. With it

in hand, the following exercise should be straightforward.

Table 8.8 Definite decomposition rules.

1: :a 0: :a 1: a^b 0: a_b 0: a!b

0: a 1: a 1: a
1: b

0: a
0: b

1: a
0: b

Table 8.9 Disjunctive decomposition rules.

1: a_b 0: a^b 1: a!b 1: a$b 0: a$b

1: a 1: b 0: a 0: b 0: a 1: b 1: a
1: b

0: a
0: b

1: a
0: b

0: a
1: b

We thus have two rules for decomposing each connective { one for sign 1

and the other for sign 0. Note carefully the rule for decomposing material

implication. It is evident from the corresponding truth-table, but is often

misremembered. Note that the rule for negation is definite no matter what

the sign (1 or 0), while the one for material equivalence is disjunctive

irrespective of sign. In the latter case, however, we need to make two entries

on each side of the fork.

EXERCISE 8.6.2

(a) What would the decomposition rules for exclusive disjunction look

like? Would they be definite or disjunctive? Can you see any connec-

tion with the rules for any of the other connectives?
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(b) Determine the status of the following formulae by the method of decom-

position trees. First test to see whether it is a tautology. If it is not a

tautology, test to see whether it is a contradiction. Your answer will

specify one of the three possibilities: tautology, contradiction, contingent.

(i) (p!(q!r))!((p!q)!(p!r))

(ii) (p!q)_(q!p)

(iii) (p$q)_(q$p)

(iv) (p$q)_(p$r)_(q$r)

(v) (p!q)^(q!r)^(q!:p)

(vi) ((p_q)^(p_r))!(p^(q_r))

Clearly, the method may also be applied to determine whether two formulae

are tautologically equivalent, whether on formula tautologically implies another,

and more generally whether a finite set of formulae tautologically implies a

formula.

l To test whether a -jj- b, test whether the formula a$b is a tautology.

l To test whether a j- b, test whether the formula a!b is a tautology.

l To test whether fa1,. . .,ang j- b, test whether the formula (a1. . .an)!b is a

tautology.

EXERCISE 8.6.3

(a) Use the method of decomposition trees to determine whether (i)

(p_q)!r -jj- (p!r)^(q!r), (ii) (p^q)!r -jj- (p!r)_(q!r), (iii)

p^:p -jj- q$:q.

(b) Use the method of decomposition trees to determine whether f:q_p,

:r!:p, s, s!:r, t!pg j- :t^:q.

8.7 Natural Deduction

The second shortcut method puts onto a formal footing the procedures that

mathematicians use in informal deductive inference. It is particularly well

adapted to showing that a formula b is a tautological consequence of a set

fa1,. . .,ang of formulae, but may be used to check the other tautologicality

252 8. Yea and Nay: Propositional Logic



relations as well. Its great attraction is that it is quite natural to anyone with some

experience in mathematical reasoning (hence its name), while its drawback is that

that in the negative case, when fa1,. . .,ang j- b, it does not provide a definite

answer. An attempt to establish a positive result may fail because it does not hold,

or because the attempt was not sufficiently persistent or clever. This is in contrast

to the method of semantic decomposition trees which, like entire truth-tables,

always supplies an answer in a finite time.

Natural deduction has two parts: enchainment and second-level (or indirect)

inference. We will sketch their essential ideas and look at some examples.

8.7.1 Enchainment

Consider an inference like the following, where we make every step explicit. We

are given the premises (p_:q)!(s!r), :s!q, and :q. We want to prove r. We

can do this by putting together simple tautological entailments to go step by step

from the premises to the conclusion.

Specifically, from the third premise we have by addition p_:q, and from this

together with the first premise by modus ponens s!r. But from the third premise

again, combined this time with the second one, we have by modus tollens ::s,

which evidently by double negation elimination gives us s. Combining this with

s!r gives us by modus ponens r, as desired.

Mathematically, the clearest way of setting this out is as a labelled derivation

tree, as follows.

( ) ( )p q s r

p q

s r

q q s q

s

s

r

Figure 8.3 A labelled derivation tree.

Such a tree is conventionally written with leaves at the top, and is usually

constructed from the leaves to the root. The leaves are labelled by the premises of

the inference. The parent of a node (or pair of nodes) is labelled by the proposition

immediately inferred from it/them. If desired, we may also label each node with

the usual name of the inference rule used to get it or, in the case of the leaves, give

it the label ‘premise’. Our example gives us a labelled 2-tree, but not quite a binary
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tree since the single-child links are not labelled ‘left’ or ‘right’. Note that the

labelling function in the example is not quite injective: there are two distinct

leaves labelled by the third premise.

Given the convention of linearity that is inherent in of our writing system (not

only for English or just western languages, but all that have developed in different

civilizations), an inference such as the above would not normally be written out as

a tree, but as a finite sequence, perhaps with annotations, as in the table below.

This is why we call it enchainment. The sequential presentation has the incidental

advantage, over the tree presentation, of eliminating any need to repeat premises

or other formulae.

Table 8.10 A derivation as a sequence with annotations.

Number Formula Obtained from By rule

1 (p_:q)!(s!r) premise

2 :s!q premise

3 :q premise

4 p_:q 3 addition

5 s!r 4, 1 modus ponens

6 ::s 3, 2 modus tollens

7 s 6 double negation

8 r 7, 5 modus ponens

EXERCISE 8.7.1

(a) In Figure 8.3 label the interior nodes with the rules used.

(b) What happens to the tree in Figure 8.3 if we merge the two nodes

labelled :q?

(c) In the last exercise we used the method of decomposition trees to show

that f:q_p, :r!:p, s, s!:r, t!pg j- :t^:q. Do the same by natural

deduction, setting out the result first as a labeled derivation tree, and

then as an annotated derivation sequence.

In our examples we have mainly used rules from the table of simple tautolo-

gical implications, and only one (double negation) from the table of tautological

equivalences. Evidently, we can use any of them too, and indeed in a stronger way.

This is because of the replacement property for tautological equivalence, estab-

lished in an exercise earlier in the chapter. We recall what it says: when a is a

subformula of g, and a -jj- a0, then g -jj- g0, where g0 is formed by replacing one

occurrence of a by a0.
With this property we may pass from, say, (p^q)!r directly to :(:p_:q)!r

since the latter is obtained by replacing a subformula (the antecedent) of the
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former by one to which it is equivalent (by de Morgan). Compare this with

passage from the same (p^q)!r to (p^(q_s))!r. This is invalid despite the fact

that the latter formula is obtained from the former by replacing a subformula (the

antecedent) by one which it tautologically implies.

8.7.2 Second-Level (Alias Indirect) Inference

The other component of natural deduction is second-level inference, also often

known as indirect inference. Its characteristic feature is that we are not simply

inferring the truth of one proposition from another; we are inferring the validity of

an entire inference from that of one or more others. The general form of a second-

level inference, in the context of propositional logic, is thus passage from k

tautological implications, called subordinate inferences:

a11,. . . j- a1

. . .

ak1. . .. j- ak

to a tautological implication, called the principal inference:

b1,. . . j- b.

We have already made use of three such principles in the intuitive reasoning of

earlier chapters, describing them informally in logic boxes. They are: conditional

proof, disjunctive proof and proof by contradiction (alias reductio ad absurdum).

Systems of natural deduction formalize and codify their use. The three principles

may are expressed in the following table, where the subordinate inferences are in

the upper row and the corresponding principal ones are in the lower row. In each

rule, n � 0.

Table 8.11 Three kinds of second-level inference.

Conditional Proof Disjunctive Proof Proof by Contradiction

a1,. . .,an,b j- g a1,. . ., an,b1 j- g
a1,. . ., an, b2 j- g

a1,. . ., an,:b j- g^:g

a1,. . .,an j- b!g a1,. . ., an, b1_b2 j- g a1,. . .,an j- b

The reason why these three forms of inference are useful is they give us more to

grab hold of:

l In conditional proof, we want to prove b!g from n premises a1,. . .,an. The rule

tells us that it suffices to prove the conclusion g from nþ1 premises a1,. . ., an,

b { one more premise to play with! Incidentally, g is also shorter than b!g,

which also helps a bit.
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l In disjunctive proof, we want to prove g from nþ1 premises a1,. . .,an, b1_b2.

The rule tells us that it suffices to prove the same conclusion g from each of two

premise-sets a1,. . .,an, b1 and a1,. . ., an, b2. The premises b1 and b2 of the two

subordinate inferences are each in general stronger than the original disjunc-

tion b1_b2, and so can be used to greater advantage.

l In proof by contradiction, we want to prove b from n premises a1,. . .,an. The

rule tells us that it suffices to prove an explicit contradiction (any one will do)

from the nþ1 premises a1,. . ., an,:b. As with conditional proof, this gives us

one more premise to deploy.

These are the three basic and most important forms of second-level inference.

There are others that stem from them. For example, proof by contradiction may

also be expressed as: from a1,. . .,an,b j- g^:g to a1,. . .,an j- :b. Conditional proof

often takes the contraposed form: from a1,. . .,an, :g j- :b to a1,. . .,an j- (b!g).

But these are details.

Terminology: The additional premises of conditional proof, disjunctive proof

and proof by contradiction are usually called suppositions (or temporary assump-

tions). A supposition is thus a premise of a subordinate inference that is not

already one of the premises of the principal inference. The term ‘indirect proof’ is

sometimes reserved for proof by contradiction, but we will use it broadly for all

kinds of second-level inference.

Alice Box: Variant forms of indirect inference

Alice: Aren’t the two forms of proof by contradiction exactly the same?

Hatter: Very nearly, but not quite; the position of the negation changes. Of

course, as far as classical logic is concerned, they are trivially equivalent.

Whatever inference we carry out with one, we can carry out using the other

plus the tautological equivalence of double negation.

Alice: You say ‘for classical logic’. Why?

Hatter: There are non-classical logics that abandon the principle of bivalence,

and in which double negation fails. For them the two forms of proof by

contradiction are not the same. In the case of so-called intuitionistic logic,

for example, where double negation introduction holds but its elimination

fails, the variant form of proof by contradiction holds but not our basic one.

But all that is beyond our concerns. . .

Alice: It is a pity that disjunctive proof does not follow the same pattern as the

other two, using an additional premise in each of the two subordinate proofs,

rather than a substitute one.

(Continued)
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Alice Box: (Continued)

Hatter: In fact, the rule can equivalently be formulated in that way: from

a1,. . ., an, b1_b2, b1 j- g and a1,. . ., an, b1_b2, b2 j- g to a1,. . .,an, b1_b2 j- g.

Here the premises of the two subordinate inferences are just those of the

principal inference, plus a bi. For uniformity, we could well regard this as

the official form of disjunctive proof, and the earlier version as a streamlining

of it. Without going into details, it should be clear that since each bi j- b1_b2,

the two forms of disjunctive proof are equivalent.

Natural deduction is quite a Pandora’s box, and some classes will want to call

a halt at this point. The remaining few pages of this chapter are for those who

would like to see just a little more about how it works.

Clearly, in any interesting indirect inference, we will have enchaining within

the subordinate inferences. Moreover, once a second-level step is completed, we

may wish to enchain its conclusion with other material. So a full account of

natural deduction must look at how the two components work together, with

conventions to permit complex inferences to be set out in as transparent and

economical a manner as possible. Unfortunately, those two desiderata tend to

conflict with each other. There are several strategic options available.

l From a mathematical point of view, working with trees, the most elegant

approach is to give a recursive definition of a derivation tree under which

leaves may be labelled not only by propositional formulae, but also by

already-constructed derivation trees. For example, a leaf may be labelled by

a derivation tree for a tautological consequence a,:b j- g^:g, and if another

leaf is labelled by a, the two can give, as parent, a node labelled b.

l In practice, such recursive trees are usually merged into a single tree, in which

additional labels are used to signify the ‘cancellation’ (also known as ‘dis-

charge’) of the suppositions of subordinate inferences. This is the method

used in most theoretical investigations stemming from a classic study by Dag

Prawitz, and it works well for systems in which subordinate inferences have all

the premises of the principal one, plus one.

l Introductory textbooks usually linearize everything, so that a complex infer-

ence involving both enchaining and second-level steps becomes a long enchain-

ment, with lots of additional labelling to record the introduction and discharge

of suppositions and keep track of dependencies. The conventions for displaying

and annotating such a linearization are quite intricate, and every textbook of

logic does it in a slightly different way, trying to balance the virtues of

transparency, brevity, and naturalness.
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We give three simple examples of how this may be done, with a fully linearized

presentation and a very explicit system of annotation.

Example 1. We want to show that f(p^q)!r, (t!:s)^(r!(t_u))g j-
(p^s)!(q!u). This contains 6 elementary letters, so a truth-table for it would

have 26 ¼ 64 rows { too much to write easily by hand. A semantic decomposition

tree would also be rather unwieldy. It is much more elegant to do it by natural

deduction, applying the indirect rule of conditional proof twice. In the table below,

the key entries, as far as indirect inference is concerned, are highlighted by boldface

type. The stuff in between is just enchainment, which should by now be fairly routine.

Table 8.12 A natural deduction using conditional proof.

N8 Formula From Rule Depends on Current Goal

1 (p^q)!r premise 1

2 (t!:s)^(r!(t_u)) premise 2 (p^s)!(q!u)

3 p^s supposition 3 q!u

4 q supposition 4 u

5 p 3 simplification 3 ditto

6 p^q 5,4 conjunction 3, 4 ditto

7 r 6, 1 modus ponens 1, 3, 4 ditto

8 r!(t_u) 2 simplification 2 ditto

9 t_u 8, 7 modus ponens 1, 2, 3, 4 ditto

10 t!:s 2 simplification 2 ditto

11 s 3 simplification 3 ditto

12 ::s 11 double
negation

3 ditto

13 :t 12, 10 modus tollens 2, 3 ditto

14 u 13, 9 disj. syllogism 1, 2, 3, 4 q!u

15 q!u 1,2,3,4
j- 14

conditional
proof

1, 2, 3
(discharge 4)

(p^s)!(q!u)

16 (p^s)!(q!u) 1,2,3,
j- 15

conditional
proof

1, 2
(discharge 3)

&

Commentary.

l The first column simply numbers the steps for easy cross-reference. The second column

givesus thecurrent formula ateachstep intheproof,beginningwiththepremises (rows1,

2) and ending with the desired conclusion (row 16). The remaining columns could be

referred to disdainfully as mere ‘book-keeping’, but their entries are needed to ensure that

there are no errors. Go through them carefully, with the following comments in mind.

l Column 3 tells us from what the current formula was immediately inferred. In

particular:

� Premises and suppositions are not inferred from anything. Hence the empty

cells in rows 1{4.
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� When we apply an indirect inference, what we get is not inferred from a

proposition, but from the prior construction of a subordinate inference.

Hence the special entries in rows 15, 16.

l We need to keep track of the premises and suppositions on which the current

formula ultimately depends. The ultimate dependencies are recorded in column

5. In particular:

� With the application of enchainment rules, ultimate dependencies grow

cumulatively.

� But whenever a rule of indirect proof is applied, its supposition is dis-

charged, i.e. the current formula no longer depends on it (rows 15, 16),

thus diminishing the ultimate dependencies.

� Suppositions are made and discharged on a last-in first-out basis. In com-

puting terminology, the suppositions form a stack.

l It is vital to keep track of the current goal. This is constantly changing { in the

example it changes four times! If we don’t keep track of it, the proof wanders

aimlessly. That is the purpose of column 6. In particular:

� Under enchainment steps, the current goal remains unchanged until we

reach it, so we write ‘ditto’ each time (rows 5{13). Of course, one could

reduce repetition by simply leaving the ditto cells blank.

� Making a supposition for conditional proof (rows 3, 4) or proof by contra-

diction changes the current goal. But making a supposition for a disjunctive

proof does not.

� When a supposition is discharged, the current goal reverts to what it was

before that supposition was made. Hence the symmetry in column 6.

� The last cell in column 6 contains an ‘end of proof’ sign, because we have

reached our initial goal and so have no current goal left to pursue!

Example 2. We want to show that :p_q, (:p_r)!s, :s!:q j- s using

disjunctive proof. We do it in the next table.

Table 8.13 A natural deduction using iterated disjunctive proof.

N8 Formula From Rule Depends on Current Goal

1 :p_q premise 1

2 (:p_r)!s premise 2

3 :s!:q premise 3 s

4 :p supposition 4 ditto

5 :p_r 4 addition 4 ditto
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Table 8.13 (continued)

N8 Formula From Rule Depends on Current Goal

6 s 2, 5 modus ponens 2, 4 ditto

7 q supposition 7 ditto

8 ::q 7, double negation 7 ditto

9 ::s 3, 8 modus tollens 3, 7 ditto

10 s 9 double negation 3, 7 ditto

11 s 2,4 j-s
3,7 j-s

disjunctive proof 1, 2, 3
(discharge 4, 7)

&

Commentary. In row 4 we make the supposition :p, and use it with the help

of 2 to get s in row 6, thus establishing the subordinate inference 2,4 j- s. Likewise

we make the supposition q in row 7, and use it with the help of 3 to get s in row

10, thus establishing the subordinate inference 3,7 j- s. We may now apply

the rule of disjunctive proof to get the same conclusion s without either of

these two suppositions, but depending instead on the disjunctive premise 1 as

well as on 2, 3.

Evidently in such derivations, applications of equivalences such as double

negation, or commutation and association for ^,_, are rather tedious, and may

well be effected jointly with neighbouring steps.

Example 3. We establish the consequence (r_s)!:p j- :(p^s) using proof by

contradiction in the next table.

Table 8.14 A natural deduction using proof by contradiction.

N8 Formula From Rule Depends on Current Goal

1 (r_s)!:p premise 1 :(p^s)

2 p^s supposition contradiction

3 p 2 simplification 2 ditto

4 :(r_s) 1, 3 modus tollens, dn 1, 2 ditto

5 :r^:s 4 de morgan 1, 2 ditto

6 :s 5 simplification 1, 2 ditto

7 s 2 simplification 2 ditto

8 s^:s 7, 6 conjunction 1, 2 ditto

9 :(p^s) 1, 2 j- 8 proof by contradiction 1
(discharge 2)

&

Commentary. Strictly speaking, for brevity we are using proof by contra-

diction in its variant form mentioned earlier. Moreover, it is rather pedantic to

assemble:s and s into a conjunction in row 8, and one could save the step by using

the rule in a further equivalent guise: from a1,. . ., an, b j- g and a1,. . ., an, b j- :g to

a1,. . .,an j- :b. The more one carries out natural deductions, the more such

corners one likes to cut.
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EXERCISE 8.7.2

(a) Solve the example in Table 8.1.2 using proof by contradiction.

(b) Do the same for the example in Table 8.1.3.

Comment: This exercise illustrates the way in which proof by contra-

diction is a universal option, in the sense that it may always be applied, at

any stage in any proof (indeed, even iterated within another such applica-

tion). Some professionals love employing it, others prefer to avoid it.

In contrast, conditional proof can only be applied when the desired

conclusion is (or can be transformed equivalently into) conditional

shape, and disjunctive proof is available only when one of the premises

(or some formula obtained in the course of the derivation) presents

itself as (or can be transformed into) a disjunction. Such transforma-

tions are always possible, but they can be rather artificial and not very

helpful.

Although we have not spelled it out in detail, it should be apparent that the

entire procedure of natural deduction makes essential (though implicit) use of

the Tarski properties of reflexivity, cumulative transitivity and monotony of the

relation of tautological consequence, which we outlined at the beginning of the

chapter. Cumulative transitivity is what allows us to ‘keep going’ without loss of

power in a derivation, and monotony permits us to take for granted that an

inference from one or two of our premises is acceptable as an inference from all of

them taken together.

FURTHER EXERCISES

8.1. Structural properties of consequence

(a) Show that the Tarski condition of monotony, for logical consequence as

an operation, follows from the condition of monotony for the corre-

sponding relation.

(b) Show that the Tarski condition of idempotence, for logical consequence

as an operation, may be obtained from joint use of the conditions of

reflexivity and cumulative transitivity for the corresponding relation.

8.2. Truth-functional connectives

(a) Construct the full disjunctive normal form for each of the two-place

truth-functions f2, f11 and f15 from the table in Section 8.3. Can any of

them be expressed more simply?
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(b) Show that the connectives ^, _,!,$ do not suffice to express all truth-

functions. Hint: Think about the top row of the truth-table. If you write

the proof out in any detail, at a certain stage you will need to carry out a

structural induction on the set of all formulae that can be built with the

mentioned connectives.

(c) Show that the pair :, $ does not suffice to express all truth-func-

tions. Hint: To do this, show that they do not suffice to express ^.

To do that, first show that if they do suffice to express ^, then they

can do so by a formula with just two elementary letters. Then show

by structural induction that any formula with just two elementary

letters and only :,$ as connectives, is true in either 0, 2, or 4 of the

rows of its truth-table.

8.3. Tautologicality

(a) Explain why the following two properties are equivalent: (i) a is a

contradiction, (ii) a j- b for every formula b.

(b) Explain why the following three properties are equivalent: (i) a is a

tautology, (ii) b j- a for every formula b, (iii) ˘ j- a.

(c) A set A of formulae is said to be inconsistent iff there is no valuation v

such that v(a)¼ 1 for all a 2A. How does this concept, applied to finite

sets of formulae, relate to that of a contradiction?

(d) Show, as claimed in the text, that the set of all contradictions and the

relations of tautological equivalence and tautological implication, are

closed under substitution. Hint: You may do this in either of two ways {

either directly from their definitions, or from their connections with the

property of being a tautology and the fact (shown in the text) that the

set of all tautologies is closed under substitution.

(e) Show by structural induction that every formula constructed using the

zero-ary connective? and the usual :,^,_ but without any elementary

letters, is either a tautology or a contradiction.

8.4. Normal forms

(a) Find a dnf for each of the following formulae: (i) r!:(q_p), (ii)

p^:(r_:(q!:p)), using the semantic method for one and the method

of successive syntactic transformations for the other.

(b) Find a cnf for the formula p^:(r_:(q!:p)) by each of the three

methods: (i) semantic, (ii) successive syntactic transformations, (iii)

indirect method (via the dnf of its negation).
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(c) For each of the following sets of formulae, first find a least letter-set

version, and then find a finest splitting version of that: C¼ fp$q, q$r,

r$:pg, D ¼ f(p^q^r)_sg, E ¼ f(p^q^r)_(s^q), :pg.

(d) True or false? For each, give proof or counter-example. (i) The least

letter-set of a formula is empty iff the formula is either a tautology or a

contradiction. (ii) If a letter is redundant in each of a, b then it is

redundant in a^b. (iii) The least letter-set of a disjunction is the union

of the least letter-sets of its disjuncts.

8.5. Semantic decomposition trees

(a) Use a semantic decomposition tree to show that (p^q)!r j-
(p^(q_s))!r.

(b) Use semantic decomposition trees to determine whether each the fol-

lowing hold: (i) (p_q)!r -jj- (p!r)^(q!r), (ii) p!(q^r) -jj-
(p!q)^(p!r), (iii) (p^q)!r -jj- (p!r)_(q!r), (iv) p!(q_r) -jj-
(p!q)_(p!r).

(c) Use semantic decomposition trees to determine whether p!(q!r) j-
(p!q)!r and conversely.

8.6. Natural deduction

(a) Show that fp!((r_s)!t), q!(:(s_u)_t), sg j- (p_q)!t by construct-

ing a natural deduction that uses conditional proof followed by dis-

junctive proof. Pay careful attention to the ‘book-keeping’ columns!

(b) Do the same, but using conditional proof followed by proof by

contradiction.

Selected Reading

Introductions to discrete mathematics tend to put their chapters on logic right at

the beginning. In the order of nature, this makes sense, but it makes it difficult to

use helpful tools like set, relation and function in the exposition. One text that

introduces logic after having presented those notions is:

James Hein Discrete Structures, Logic and Computability. Jones and Bartlett,

2002 (second edition), Chapter 6.

Four well-known books on elementary logic are listed below. The first is written

specifically for students of computer science without much mathematics, the
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second for the same but with more mathematical sophistication, while the last

two are aimed at students of philosophy and the general reader.

Michael Huth and Mark Ryan Logic in Computer Science. Cambridge Uni-

versity Press, 2000, Chapter 1.

Mordechai Ben-Ami Mathematical Logic for Computer Science. Springer,

2001 (second edition), Chapters 1{4.

Colin Howson Logic with Trees. Routledge, 1997, Chapters 1{4.

Wilfrid Hodges Logic. Penguin, 1977, Sections 1{25.1.
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9
Something about Everything:

Quantificational Logic

Chapter Outline

Although fundamental, the logic of truth-functional connectives has very limited

expressive power. In this chapter we go further, explaining the basic concepts of

quantificational (alias first-order, or again predicate) logic, which is sufficiently expres-

sive to cover all of the deductive reasoning that is carried out in standard mathematics.

We begin by presenting the language of quantificational logic { its components

such as the universal and existential quantifiers, and the ways they can be put to work

to express complex relationships. With only an intuitive understanding of the quanti-

fiers, some of the basic logical equivalences involving them can already be appreciated.

Although the language still works within the assumption of bivalence, truth-tables are

not sufficient to give an analysis of the two quantifiers. For this reason, we need to

provide a rather more complex semantics. This is followed by a review of some of the

most important logical implications with quantifiers. These provide the basis for

extending the procedures of natural deduction to deal with the quantifiers.

9.1 The Language of Quantifiers

We have been using quantifiers informally throughout the book, and have made a

few remarks on them in logic boxes. Recall that there are two quantifiers 8 and 9,
meaning ‘for all’ and ‘for some’. They are always used with an attached variable.

D. Makinson, Sets, Logic and Maths for Computing,
DOI: 10.1007/978-1-84628-845-6 9, � Springer-Verlag London Limited 2008
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9.1.1 Some Examples

Before getting systematic, we give some examples of statements of ordinary

English and their representation using quantifiers, comment on their salient

features, and raise questions that will be answered as we continue the chapter

Table 9.1 Examples of quantified statements

English Symbols

1 All composer are poets 8x(Cx!Px)

2 Some composers are poets 9x(Cx^Px)

3 No poets are composers 8x(Px!:Cx)

4 Everybody loves someone 8x9y(Lxy)

5 There is someone who is loved by everyone 9y8x (Lxy)

6 There is a prime number less than 5 9x(Px^(x<5))

7 Behind every successful man stands an
ambitious woman

8x((Mx^Sx)! 9y(Wy^Ay^Byx))

8 No man is older than his father :9x(Oxf(x))

9 The successors of distinct integers are distinct 8x8y(:(x�y)!:(s(x) �s(y))

Comments Questions

1 Uses the universal quantifier 8, variable x,
two predicate letters, truth-functional
!

Could we use a different variable, say y?

Why are we using! here instead of, say, ^?
Can we express this using 9 instead of 8?
What is its relation to 8x(Px!Cx)?

2 Uses the existential quantifier 9, truth-
functional ^

Why are we using ^ here instead of!?

Can we express this using 8 instead of 9?
Is it logically implied by 1?
What is its relation to 9x(Cx^:Px)?

3 Uses 8,!, : Can we express this using 9,^,:?

What is its relation to 8x(Cx!:Px)?
4 Two quantifiers, relation symbol Why haven’t we used a predicate P for ‘is a

person’? Does the meaning change if we
write 8x9y(Lyx)?

5 Order of quantifiers-with-attached-
variables reversed

Is this equivalent to 4? Does either logically
imply the other?

6 Uses a constant ‘5’ Could we somehow replace the individual
constant by a predicate?

7 Two quantifiers, more complex truth-
functional part

Could we express this equivalently with both
quantifiers up the front?

8 Uses a function symbol f with f(x) meaning
‘the father of x’

Could we express this with a relation symbol
F and two variables?

Could we express the statement more
‘positively’?

9 No quantifier explicit in the English, but
two universals are implicit. Uses the
identity relation symbol, which we
write as � rather than ¼ to avoid
confusions when we define the
semantics shortly.

Does the meaning change if we reverse the
initial quantifiers?

Is the identity relation any different, from the
point of view of logic, than other
relations?
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EXERCISE 9.1.1

On the basis of your informal experience with quantifiers, have a go at

answering the questions in the table. If you feel confident about most of

them, congratulations, you seem to have a head start! But keep a record of

your answers to check later. If the questions leave you puzzled or uncertain,

by the end of this chapter you should be able to do better.

9.1.2 Systematic Presentation of the Language

The basic components of the language of quantificational logic are set out in the

following table.

In each of the categories of designators, function letters and predicates, we

assume that we have an infinite supply. These can be referred to by using

numerical subscripts, e.g. f1,f2,. . . for the function letters. Strictly speaking, we

should also have numerical superscripts to indicate the arity of the function and

predicate letters, so that the two-place predicate letters, say, are listed as

Table 9.2 Ingredients of the language of quantificational logic

Broad
Category Specific Items

Signs
Used Purpose

Designators constants a, b, c,. . . name specific objects: e.g. 5, Charlie
Chaplin, London

variables x, y, z,. . . range over specific objects, combine with
quantifiers to express generality

Function
letters

1-place f, g, h,. . . form compound terms out of simpler terms

n-place

Predicates 1-place P, Q,. . . e.g. is prime, is funny, is polluted

2-place P, Q, R,
S,. . .

e.g. is smaller than, resembles, is colder
than

n-place P, Q, R,
S,. . .

e.g. lies between (3-place)

special relation sign � identity

Quantifiers universal 8 for all

existential 9 there is

Connectives from propositional
logic

:,^,_,!,
etc

usual truth-tables

Auxiliary parentheses and
commas

(, ), , , parentheses are necessary to ensure unique
decomposition, commas are optional to
make formula easier to read.
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R2
1, R2

2,. . . But as this is rather cumbersome, we ordinarily use a few chosen

letters as indicated in the table, with context or comment indicating the arity.

How are these ingredients put together to build formulae? Recursively, as you

would expect, but in two stages. First we define the notion of a term.

Basis : Constants and variables are terms.

Recursion step : If f is an n-place function symbol and t1, . . . tn are terms,

then f(t1, . . . , tn) is a term.

As remarked above, commas are not really needed, but are customarily used to

make terms easier to read. Moreover, as all function symbols are prefixed to their

arguments, and each function symbol has a predetermined arity, we do not really

need parentheses when forming terms (recall the discussion of parenthesis-free

notation in the chapter on trees). But parentheses are usually included to facil-

itate human reading, as in the above definition.

EXERCISE 9.1.2 (WITH SOLUTION)

Which of the following are terms, where f is 2-place and g is 1-place? In the

negative cases, give a brief reason. (i) a, (ii) ax, (iii) f(x,b), (iv) f(b,g(y)), (v)

g(g(x,y)), (vi) f(f(b,b), f(a,y)), (vii) g(g(a)), (viii) g(g(a), (ix) gg(a).

Solution: (i) Yes. (ii) No: it is neither a constant nor a variable nor formed

using a function symbol. (iii) Yes. (iv) Yes. (v) No: g is one place. (vi) Yes. (vii)

Yes, (viii) No: a right-hand parenthesis forgotten. (ix) Strictly speaking no, but

this often used to abbreviate g(g(a)), and we will do the same in what follows.

Given the terms, we can now define formulae recursively.

Basis: If R is an n-place predicate and t1,. . .,tn are terms, then R(t1,. . .,tn) is a

formula (called an atomic formula), and so is (t1 � t2) where � is the symbol for

the identity relation.

Recursion step: If a, b are formulae and x is a variable, then the following are

formulae: (:a), (a^b), (a_b), (a!b), 8x(a), 9x(a).

As in propositional logic we drop parentheses whenever context or convention

suffices to ensure unique decomposition. For ease of reading, when there are

multiple parentheses, we may also use different styles, e.g. square brackets. The

special relation sign� for identity is customarily infixed. All other predicates, like

function symbols, are prefixed; for this reason the parentheses and commas in

atomic formulae without identity can be omitted without ambiguity, and some-

times will be.
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Alice Box: Metavariables, use and mention

Alice: In the recursion step, where you consider the quantifiers, you have used

one particular variable, namely x. Do you mean that we can use any of the

variables x, y, z,. . . in this position?

Hatter: Of course.So whena is a formula, then8y(a),8z(a) etc are also formulae.

Alice: So why didn’t you say so explicitly?

Hatter: We could have done so, but to do it systematically we would have to

draw on a fresh supply of metavariables. These would be variables in our

metalanguage (i.e. the language in which we are presenting quantificational

logic), and would range over the set of all signs serving as variables in the object

language (in this instance the language of quantificational logic). Indeed, we

would have to do the same when talking about predicates, function symbols etc.

In the early twentieth century, as part of a desire to make everything absolutely

explicit, there were a few books that did all this, whether with a whole array of

such metavariables or with the help of a special device known as quasi-quotes.

But you can imagine how cumbersome this is ! The text quickly becomes

unreadable and intensely annoying. So nobody does it any more, although every-

body knows that it can be done, and indeed for utter strictness should be done.

Alice: I notice that when you talk about a specific sign, say the conjunction

sign or the universal quantifier, you do not put it in inverted commas. You say:

‘The symbol 8 is the universal quantifier’ rather than ‘The symbol ‘‘8’’ is the

universal quantifier’. Is this legitimate? Isn’t it like saying ‘The word London

has six letters’ when you should be saying ‘The word ‘‘London’’ has six letters’?

Hatter: Indeed, strictly speaking we should use some device like quotation marks,

italicizing, or underlining to distinguish use and mention { the use of a symbol like

8 in our object language and its mention in our metalanguage. But this is also very

tiresome when done systematically, and we can usually omit it without confusion.

Alice: So presentations of logic are in general rather less rigorous than the

logic they present!

Hatter: I suppose you could put it that way. . .

EXERCISE 9.1.3 (WITH SOLUTION AND COMMENTS)

(a) Which of the following are formulae, where R is a 2-place predicate and

P is a 1-place predicate, and f, g are as in the previous exercise? In the

negative cases, give a brief reason. (i) R(a,a), (ii) R(x,b)^:P(g(y)),
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(iii) R(x,P(b)), (iv) P(P(x)), (v) 8(Rxy), (vi) 9P(Px), (vii) 8x8x(Px),

(viii) 8x(Px!Rxy), (ix) 9y9y(R(f(x,y),g(x))), (x) 8x(9y(Rxy)), (xi)

8x9y(Rxy), (xii) 9x(Ray), (xiii) 9x8x(Ray), (xiv) 9x9y8z8w9u(P(x)^R

(y,z)^R(w,u)).

(b) Go through all the symbolic expressions in Table 9.1 and check that

they are really formulae in the sense defined (given conventions for the

omission of brackets such as we have described).

Solution and comments:

(a) (i), (ii) Yes. (iii) No: P(b) is a formula, not a term, and we need a term in

this position if the whole expression is to be a formula. Note this care-

fully, as it is a common student error. (iv) No, same reason. (v) No: the

quantifier does not have any variable attached to it. (vi) No: the quanti-

fier has a predicate attached to it, rather than a variable. Such expres-

sions are admitted in what is called second-order logic, but not in

quantificational (alias first-order) logic. (vii) Yes, despite the fact that

both quantifiers have the same variable attached to them. (viii), (ix), (x)

Yes. (xi) Strictly speaking, a pair of parentheses is missing. But in this

kind of formula, where we have a string of quantifiers following each

other, we can drop such parentheses without ambiguity, and will do so.

(xii), (xiii) Yes. (xiv) Yes, although the mind boggles at this sequence of

five initial quantifiers (best thought of as three blocks of alternating

quantifiers). Such levels of quantificational complexity do actually occur

in working mathematics: for an example of three alternating quantifiers,

think of the definition of a limit, if you are familiar with it.

(b) Yes, they are all formulae, given those conventions. Notice the omis-

sion of parentheses in the double quantifications 4 and 5, and the

infixing of the identity sign in 9 (and of the sign for an arithmetic

relation in 6).

EXERCISE 9.1.4 (WITH SOME ANSWERS, HINTS AND COMMENTS)

Express the following statements in the language of quantificational logic,

using naturally suggestive letters for the predicates. For example, in (a) use

L for the predicate ‘is a lion’, T for the predicate ‘is a tiger’, and D for the

predicate ‘is dangerous’.

(a) Lions and tigers are dangerous, (b) If a triangle is right-angled then

it is not equilateral, (c) Anyone who likes Albert likes Betty, (d) Albert

doesn’t like everybody Betty likes, (e) Albert doesn’t like anybody Betty
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likes, (f) Everyone who loves someone is loved by that person, (g) Everyone

who loves someone is loved by someone, (h) There are exactly two prime

numbers less than 5, (i) Every integer has exactly one successor (j) My

mother’s father is older than my father’s mother.

Some answers, hints and comments:

(a) Can be 8x(Lx!Dx)^8x(Tx!Dx) or 8x((Lx_Tx)!Dx). It cannot be

expressed as 8x((Lx^Tx)!Dx) { try to understand why! Notice that

the universal quantifier is not explicit in the English, but it evidently

part of the meaning.

(b) 8x((Tx^Rx)!:Ex). Here we are using T for ‘is a triangle’. You can also

simplify life by declaring the set of all triangles as your ‘domain of

discourse’ and write simply 8x(Rx!:Ex). This kind of simplification,

by declaring a domain of discourse, is often useful when symbolizing. But

it is legitimate only if the domain is chosen so that nothing the statement

says concerns anything outside the domain.

(c) 8x(Lxa!Lxb). We declare our domain of discourse to be the set of all

people, write Lxy stands for ‘x likes y’, and we use individual constants

for Albert and Betty.

(d), (e) Hint: Try to understand the difference of meaning between the two.

The English words ‘every’ and ‘any’ tend do much the same work when

they occur positively, but when occurring negatively they do quite

different jobs. Declare your domain of discourse.

(f), (g) Hint: Try to understand the difference of meaning, and declare your

domain of discourse. In (f) you will need two quantifiers, both universal

(despite the idiomatic English), while in (g) you will need three

quantifiers.

(h) Hint: The problem here is how to say that there are exactly two items

with a certain property. Try paraphrasing it as: there is an x and there

is a y such that they both have the property and everything with the

property is identical to at least one of them. This goes into the language

of quantificational logic smoothly. Take your domain of discourse to be

the set of positive integers.

(i) Hint: If you can express ‘exactly two’ it should be easy to express

‘exactly one’.

(j) Hint: Declare your domain of discourse. Use one-place function letters

for ‘father of’ and ‘mother of’. Use a constant to stand for yourself.
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9.1.3 Freedom and Bondage

To understand the internal structure of a formula of quantificational

logic, three notions are essential { the scope of a quantifier, and free

versus bound occurrences of a variable. We explain them through some

examples.

Consider the formula 8z(:Rxz^9y(Rxy)). It has two quantifiers. The scope of

the each quantifier is the material in the parentheses immediately following it.

Thus the scope of the first quantifier is the material between the large square

brackets:

8z½:Rxz ^ 9yðRxyÞ�:

The scope of the second quantifier likewise:

8zð:Rxz ^ 9y½Rxy�Þ;

Note how the scope of one quantifier may lie inside the scope of another, or be

entirely separate from it. They never overlap.

In a quantified formula 8x(a) or 9x(a) the quantifier is said to bind the

occurrence of the variable x that is attached to it, and all occurrences of the

same variable x occurring in a, unless some other quantifier occurring inside

a already binds them. An occurrence of a variable x in a formula a is said to

be bound in a iff there is some quantifier in a that binds it. Occurrences of a

variable that are not bound in a formula are called free in the formula.

Finally, a formula with no free occurrences of any variables is said to be

closed.

EXERCISE 9.1.5 (WITH PARTIAL SOLUTION)

(a) Identify the free and bound occurrences of variables in the formula

8z(:Rxz^9y(Rxy)). Use arrows from above to mark the bound occur-

rences, arrows from below for the free ones.

(b) Use large square brackets to indicate the scope of each quantifier

in the formula 8x9y(Rxy)_9z(Py!8x(Rzx^Ryx)). For this, write

the formula out four times, once for each quantifier. Recall the

convention for omitting parentheses in a string of contiguous

quantifiers.
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(c) Identify the bound and the free occurrences of variables in the formula

of (b), using arrow pointers as before.

(d) Use the last example to illustrate how a single variable may have one

occurrence bound, another free, in the same formula.

(e) Give a simple example to illustrate how an occurrence of a variable may

be bound in a formula but free in one of its subformulae.

(f) Consider the formula 8x9y8x9y(Rxy). Which quantifiers bind which

occurrences of x? Which bind which occurrences of y?

(g) Which of the formulae mentioned in this Exercise are closed?

Solution to (f): The outer 8 binds only the occurrence of x attached to it.

The inner 8 binds both the occurrence of x attached to it and the occurrence

of x in Rxy. Likewise for 9.

Comment: The translation into symbols of any complete sentence of Eng-

lish should have all its variables bound, i.e. it should be closed. Review

Table 9.1 to check this out.

9.2 Some Basic Logical Equivalences

At this point we could set out the semantics for quantificational formulae, with

rigorous definitions of logical relationships such as consequence and equivalence.

But we will postpone the formal definitions until the next section, and in the

meantime cultivate intuitions. There are a number of basic logical equivalences

that can already be appreciated when you read 8x(a) and 9x(a) intuitively as

saying respectively ‘a holds for every x in our domain of discourse’ and ‘a holds for

at least one x in our domain of discourse’.

First among these equivalences are the quantifier interchange principles, which

show that anything expressed by one of our two quantifiers may equivalently be

expressed by the other with the judicious help of negation. In the following table,

the formulae on the left are logically equivalent to those on the right.

Table 9.3 Quantifier interchange equivalences

:8x(a) 9x(:a)

:9x(a) 8x(:a)

8x(a) :9x(:a)

9x(a) :8x(:a)
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Here a stands for any formula of quantificational logic. We will use -k- for the

as yet not formally defined, but intuitively understood, concept of logical equiva-

lence for quantificational formulae.

Actually, any one of these four equivalences can be obtained from any other by

means of double negation and the principle of replacement of logically equivalent

formulae. For example, suppose we have the first one, and we want to get the last

one. We note that 9x(a) -k- 9x(::a) -k- :8x(:a) and we are done.

EXERCISE 9.2.1

(a) Obtain the second and third quantifier interchange principles from the

first one by a similar procedure.

(b) Use quantifier interchange and suitable truth-functional equivalences

to show that (i) :8x(a!b) -k- 9x(a^:b), (ii) :9x(a^b) -k- 8x(a!:b),

(iii) 8x(a!b) -k- :9x(a^:b), (iv) 9x(a^b) -k- :8x(a!:b). These

equivalences are important, because the formulae correspond to famil-

iar kinds of statement in English. For example in (i), the left side says

‘not all as are bs’, while the right one says ‘at least one a is not a b’.

(c) To what English statements do the equivalences (ii) through (iv)

correspond?

The next group of equivalences may be described as distribution principles.

They show that way in which universal quantification distributes over conjunc-

tion, while the existential distributes over disjunction.

Why does the universal quantifier get on so well with conjunction? Essentially

because it is like a long conjunction. Suppose our domain of discourse has just n

elements, named by n individual constants a1,. . .,an. Then saying 8x(Px) amounts

to saying, of each element in the domain, that it has the property, i.e. that

Pa1^. . .^ Pan. This is called a finite transform of 8x(Px).

Of course if we change the size of the domain, then we change the length of the

conjunction; and to make the breakdown work we must have enough constants to

name all the elements of the chosen domain. But even with these provisos, it is

clear that the principles for 8 tend to reflect those for ^, while those for 9 resemble

familiar ones for _. We will return to this after giving the semantics for quanti-

ficational logic.

Table 9.4 Distribution equivalences

8x(a^b) 8x(a)^8x(b)

9x(a_b) 9x(a)_9x(b)
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EXERCISE 9.2.2

(a) Write out 8x(a^b) as a conjunction in a domain of three elements, with

a taken to be the atomic formula Px and b the atomic formula Qx. Then

write out 8x(a)^8x(b) in the same way and check that they are equiva-

lent. What truth-functional principles do you appeal to in that check?

(b) What does 9x(Px) amount to in a domain of n elements?

(c) Write out 9x(a_b) as a disjunction in a domain of three elements, with

a chosen as Px and b as Qx. Then write out 9x(a)_9x(b) in the same

way and check that they are equivalent. What truth-functional prin-

ciples do you appeal to?

(d) If we think of the universal and existential quantifier as expressing

generalized conjunctions and disjunctions respectively, to what famil-

iar truth-functional equivalences do the entries in Table 9.3.

correspond?

(e) Illustrate your answer to (d) by constructing finite transforms for the

third row of Table 9.3. in a domain of three elements with a chosen

as Px.

This idea of working with such finite transforms of quantified formulae can be

put to systematic use to obtain negative results. We will return to this later.

The last group of intuitively obvious equivalences that we will mention are the

vacuity principles. They are expressed in the following table, where all formulae in

a given row are equivalent.

In other words, quantifying twice on the same variable does no more than

doing it once. To say ‘for every x it is true that for every x we have Px’ is just a

longwinded way of saying ‘Px for every x’. Note that in these vacuity equivalences

the variables must be the same: 8x(Rxy) is not logically equivalent to 8y8x(Rxy) or

to 9y8x(Rxy).

The equivalences of the table are special cases of a general principle of vacuous

quantification: If there are no free occurrences of x in j, then each of 8x(j) and

9x(j) is logically equivalent to j.

Table 9.5 Vacuity equivalences

8x (a) 8x8x (a) 9x8x (a)

9x (a) 9x9x (a) 8x9x (a)
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9.3 Semantics for Quantificational Logic

It is time to get rigorous. In this section we present the semantics for quantifica-

tional logic. To keep a sense of direction, remember that we are working towards

an analogue, adequate for our enriched language, of the concept of a valuation of

propositional logic and the ensuing notions of consequence etc.

9.3.1 Interpretations

We begin with the notion of an interpretation. This is defined to be any pair (D,d)

where:

l D is a non-empty set (called the domain or universe of discourse of the

interpretation)

l d is a function (called the designation or denotation function) that assigns a

value to each constant, variable, predicate letter and function letter of the

language in the following way:

� For each constant a of the language, d(a) is an element of the domain, i.e.

d(f) 2 D,

� Likewise, for each variable x of the language, d(x) is an element of the

domain, i.e. d(x) 2 D,

� For each n-place function letter f of the language, d(a) is an n-argument

function on the domain, i.e. d(f): Dn!D,

� For each n-place predicate P of the language, other than the identity

symbol, d(P) is an n-place relation over the domain, i.e. d(P) � Dn.

� For the identity symbol, we put d(�) to be the identity relation over the

domain.

The last clause of this definition means that we are giving the identity symbol

privileged treatment. Whereas other predicate symbols may be interpreted as any

relations over the domain, so long as they have the right arity, the identity symbol

is always treated as genuine identity over the domain. Semantics following this

rule are often said to be standard (with respect to identity). It is also possible to

give a non-standard treatment of identity, in which it is interpreted as any

equivalence relation over the domain that is also a congruence with respect to

all function letters and predicates. We will not go further into the non-standard

approach, confining ourselves to standard interpretations.
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9.3.2 Valuating Terms Under an Interpretation

Given an interpretation (D,d), we can define the value dþ(t) of a term recursively,

following the recursive definition of the terms themselves:

dþ(a) ¼ d(a) for every constant a of the language

dþ(x) ¼ d(x) for every variable x of the language

dþ(f(t1, . . .,tn)) ¼ (dþ(f))(dþ(t1),. . .,dþ(tn)).

The recursion step (i.e. the last clause) needs some commentary. We are in effect

defining dþ(f(t1,. . .,tn)) homomorphically. The value of a term f(t1,. . .,tn) is defined

by taking the interpretation of the function letter f, which will be a function on Dn

into D, and applying that function to the interpretations of the terms t1,. . .,tn, which

will all be elements of D, to get a value that will also be an element of D. The notation

makes it look complicated, but the underlying idea is natural and simple.

There are some contexts in which the notation could be simplified. When

considering only one interpretation function d, we can reduce clutter by writing

d(t) as t, simply underlining the term t. Written this way, the recursion clause of

the above definition says: f(t1,. . .,tn) ¼ f(t1,. . .,tn) { which is much easier to read.

But in contexts where we are considering more than one interpretation (which is

most of the time), this simple notation is not open to us, unless of course we use

more than one kind of underlining.

As dþ is a uniquely determined extension of d, we will follow the same ‘abuse of

notation’ as in propositional logic and write it simply as d.

9.3.3 Valuating Formulae Under an Interpretation: Basis

Finally, we may go on to define the notion of the truth or falsehood of a formula a
under an interpretation (D,d). Again our definition is recursive, following the recur-

sive construction of the formulae themselves. We are defining a function � from the

set L of all formulae into the set f0,1g, i.e. �: L!f0,1g. So we will merely specify when

�(a)¼ 1, leaving it understood that otherwise �(a)¼ 0. Of course, strictly speaking �

should be written as �D,d(a), but in our battle to keep notation under control we omit

the subscript whenever context allows us to do so without serious ambiguity.

l Basis, first part: For any atomic formula of the form Pt1,. . .,tn: v(Pt1,. . .,tn)¼ 1

iff (d(t1),. . .,d(tn))2 d(P). In the shorthand underlining notation:Pt1,. . .,tn¼ 1 iff

(t1,. . .,tn) 2 P.

l Basis, second part: For any atomic formula of the form t1� t2: �(t1� t2)¼ 1 iff

(d(t1),d(t2)) 2 d(�). Since d(�) is required to be the identity relation over D,

this means that �(t1 � t2) ¼ 1 iff d(t1) ¼ d(t2).
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9.3.4 Valuating Formulae Under an Interpretation:
Recursion Step

The recursion step also has two parts, one for the truth-functional connectives

and the other for the quantifiers. The first part is easy.

l Recursion step for the truth-functional connectives: v(:a) ¼ 1 iff v(a) ¼ 0 and

so on for the other truth-functional connectives, just as in propositional logic.

The recursion step for the quantifiers is at the heart of quantificational logic.

But it is subtle, and needs careful formulation. In the literature, there are two

ways of doing this. They are equivalent, but passions can run high over which is

better to use, and it is good policy to understand both of them. They are known as

the x-variant and substitutional readings of the quantifiers.

9.3.5 The x-Variant Reading of the Quantifiers

Let (D,d) be any interpretation, and let x be any variable of the language. By an

x-variant of (D,d) we mean any interpretation (D,d0) that agrees with (D,d) in the

choice of domain, and also in the interpretation given to all constants, function

letters and predicates (i.e. d0(a) ¼ d(a), d0(f) ¼ d(f), d0(P) ¼ d(P) for all letters of

the respective kinds), and also agrees on the interpretation given to all variables

except possibly the variable x (so that d0(y) ¼ d(y) for every variable y of the

language other than the variable x). With this notion in hand, we evaluate the

quantifiers as follows:

�ð8xð�ÞÞ ¼ 1 where � ¼ �D;�; iff �D;�0ð�Þ ¼ 1 for every x-variant

interpretation ðD; d0Þ of ðD; dÞ:

�ð9xð�ÞÞ ¼ 1 where � ¼ �D;�; iff ¼ �D;�0 ð�Þ ¼ 1 for at least one x-variant

interpretation ðD; d0Þ of ðD; dÞ:

Alice Box: The x-variant reading of the quantifiers

Alice: So we are using quantifiers in our metalanguage when defining their

semantics in the object language?

Hatter: Sure, just as we used truth-functional connectives in the metalanguage

when defining their semantics in the object language. There’s no other way.
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EXERCISE 9.3.1 (WITH PARTIAL SOLUTION)

(a) In a domain D consisting of two items 1 and 2, construct an inter-

pretation that makes the formula 8x(Px_Qx) true but makes

8x(Px)_8x(Qx) false. Show your calculations of the respective truth-

values.

(b) Do the same for the pair 9x(Px)^9x(Qx) and 9x(Px^Qx).

(c) Again for the pair 8x9y(Rxy) and 9y8x(Rxy).

Sample solution to (a): Put d(P) ¼ f1g, d(Q) ¼ f2g, and d(x) any element

of D. Let v¼ vD,d. We claim that v(8x(Px_Qx))¼ 1 while v(8x(Px)_8x(Qx))

¼ 0. For the former, it suffices to show that v0(Px_Qx) ¼ 1 for every x-

variant interpretation v 0. But there are only two such x-variants: one puts

d0(x) ¼ 1 while the other puts d00(x) ¼ 2. The former gives us v 0(Px) ¼
1 while the latter gives v 00(Qx) ¼ 1, so v 0(Px_Qx) ¼ v 00(Px_Qx) ¼ 1 and

thus v(8x(Px_Qx))¼ 1. For the latter, we have v 00(Px)¼ 0¼ v 0(Qx) so that

v(8x(Px)) ¼ 0 ¼ v(8x(Qx)) and so finally v(8x(Px)_8x(Qx)) ¼ 0 as desired.

Comments: Evidently, a detailed verification like this is rather tedious, and

before long you should be able to ‘see’ the value of a fairly simple formula

under a given interpretation without writing out all the details. But to get to

that point, one has to begin by doing some examples in full detail.

After working through these examples, it should be clear that the truth-value of a

formula under an interpretation is independent of the value given to the variables that

do not occur free in it. For example, in the formula 8x(Px_Qx) the variable x does not

occur free { all its occurrences are bound { and so its truth-value under the interpreta-

tion (D,d) is independent of the value of d(x).

Alice Box: Interpreting formulae that are not closed

Alice: This may connect with something that bothers me. I have been browsing

in several books on logic for students of mathematics. They use the x-variant

account, but in a rather different way. Under the definition above, every

formula comes out as true, or as false, under a given interpretation, i.e. we

always have either vD,d(a) ¼ 1or vD,d(a) ¼ 0. But the books that I have been

looking at insist that when a formula a has free occurrences of variables (i.e. is

not closed) then in general it is neither true nor false under an interpretation!

What is going on?

(Continued)

9.3 Semantics for Quantificational Logic 279



Alice Box: (Continued)

Hatter: Indeed, you are quite right to be puzzled! That is another way of

building the same x-variant semantics. When those authors speak of an

‘interpretation’ or model, they mean one which is like ours except that the

designation function d does not act on the variables of the language { only on

the constants, function letters, and predicates. A model, in that sense, is then

supplemented by an assignment of values in D to the variables. Thus our

interpretation is their model-plus-assignment.

Alice: And then?

Hatter: In such texts, formulae (including those with free occurrences of

variables) are evaluated under a model-plus-assignment in exactly the same

way as we have done under an interpretation, but with a terminological

difference. Rather than speaking of truth and falsity and writing vD,d(a) ¼ 1

and vD,d(a)¼ 0, they speak of the model-plus-assignment ‘satisfying’ or ‘not

satisfying’ the formula. Finally, a formula is declared to be true in the model

iff it is satisfied for every assignment accompanying that model, and is called

false in the model iff it is satisfied for none of those assignments. Those

formulae that are satisfied by some but not all of the assignments accom-

panying the model (for example the simple atomic formula Px, when

the model interprets the predicate letter P as a proper non-empty subset

of the domain) are deemed to be neither true nor false in the model. As a

result, an arbitrary formula a is counted as true-in-a-model iff 8x(a) is

true in it.

Alice: Why not follow that way of speaking?

Hatter: No objection in principle: the formulations are equally rigorous, and

give the same result for closed formulae. For formulae that are not closed, our

‘truth under an interpretation’ is the same as their ‘satisfaction under a

model-plus-assignment’. But my experience is that such a way of speaking

causes unnecessary muddles for students.

Alice: How?

Hatter: Having become accustomed to expressing bivalence in propositional

logic with the terms ‘truth’ and ‘falsehood’, when they get to quantificational

logic they are asked to express the same fundamental principle with the

terms ‘satisfaction’ and ‘non-satisfaction’, and to employ the terms

‘truth’ and ‘falsehood’ in a non-bivalent way. A sure recipe for classroom

confusion!
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9.3.6 The Substitutional Reading of the Quantifiers

The second way of reading the quantifiers is not often used by mathematicians,

with some exceptions { for example in celebrated work of Abraham Robinson. But

it is quite often employed by computer scientists and philosophers.

Given a formula a and a variable x, we write a[t/x] to stand for the result of

substituting the term t for all free occurrences of x in a. Thus if a is the formula

8z(:Rxz^9x(Rxy)) then a[a/x] ¼ 8z(:Raz^9x(Rxy)), obtained by replacing the

unique free occurrence of x in a by the constant a.

EXERCISE 9.3.2

(a) Let a be the formula 8z(:Rxz^9y(Rxy)) used earlier when defining the

notion of scope. Write out a[a/x], a[b/y].

(b) Do the same for the formula 8x9y(Rxy)_9z(Py!8x(Rzx^Ryx)), also

introduced in Exercise 9.1.5.

We are now ready to give the substitutional reading of the quantifiers. Let

(D,d) be any interpretation. Make sure that the interpretation function d,

restricted to the set of all constants of the language, is onto D, i.e. that every

element of D is the value under d of some constant symbol. If it is not already

onto D, add enough constants to the language, extending the domain of the

interpretation function to ensure that it is onto. Then evaluate the quantifiers as

follows:

�ð8xð�ÞÞ ¼ 1 iff �ð�½a=x�Þ ¼ 1 for every constant symbol

a of the (thus expanded) language.

�ð9xð�ÞÞ ¼ 1 iff �ð�½a=x�Þ ¼ 1 for at least one constant symbol

a of the (thus expanded) language.

Alice Box: Substitutional reading of the quantifiers

Alice: One moment! There is something funny here. I see why you need to

expand the supply of constants in the language. You need to guarantee that

8x means ‘for every element in the domain’ and not just ‘for every element of

the domain that happened to get a name’. But this means that the language is

(Continued)
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Alice Box: (Continued)

not fixed { the supply of constants depends on the particular domain of

discourse under consideration. That’s odd!

Hatter: Odd, yes, but not incoherent. It works perfectly well. It is not difficult

(though rather messy and tedious) to show that every formula a in the

original, unexpanded language gets the value 1 under the x-variant reading

of the quantifiers iff after expanding the language, it gets the value 1 under the

substitutional reading.

Alice: Still, I would like to keep my language fixed.

Hatter: Well, up to a point we can do that by making use of a deep result

known as the L€owenheim-Skolem theorem. Perhaps you remember, from one

of our conversations in the chapter on functions, the concept of a countable

set: it is one that has a bijection (one-one correspondence) with the set N of

natural numbers. The L€owenheim-Skolem theorem tells us that for any

formula a (indeed, for any set A of formulae) of quantificational logic, if

there is an interpretation (D,d) with v(D,d)(a)¼ 1, then there is an interpreta-

tion (D 0,d 0) with D 0 countable, such that v(D 0,d 0)(a) ¼ 1. So, to keep

our language fixed, all we need to do is to require it to have a countable set

of constants. Admittedly, that won’t make truth under an interpretation the

same under the x-variant and substitutional readings of the quantifier, but it

will make logical consequence, logical equivalence, and logical truth, shortly

to be defined, the same { which is what we are really interested in.

Alice: I am afraid that I am rather lost there, but take your word for it.

Nonetheless, I must admit that somehow I still have a preference for the

x-variant reading. Perhaps I am a mathematician at heart, rather than a

philosopher or computer scientist.

EXERCISE 9.3.3 (WITH PARTIAL SOLUTION)

Take the formulae of Exercise 9.3.1 (a), (b), (c) and obtain the same results

using the substitutional reading of the quantifiers in the two element

domain f1, 2g.

Solution to (a): Put d(P) ¼ f1g and d(Q) ¼ f2g, and let a, b be constants

with d(a) ¼ 1 and d(b) ¼ 2. We claim that v(8x(Px_Qx)) ¼ 1 while

v(8x(Px)_8x(Qx)) ¼ 0. For the former, it suffices to show that both
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v(Pa_Qa) ¼ 1 and v(Pb_Qb) ¼ 1. But since v(Pa) ¼ 1 we have v(Pa_Qa)

¼ 1, and likewise since v(Qb) ¼ 1 we have v(Pb_Qb) ¼ 1. For the latter,

v(Pb) ¼ 0 so that v(8x(Px)) ¼ 0, and likewise v(Qa) ¼ 0 so that v(8x(Qx))

¼ 0, and so finally v(8x(Px)_8x(Qx)) ¼ 0 as desired.

The substitutional account of the quantifiers throws light on the finite

transforms of a quantified formula, which we discussed briefly in the preceding

section. Let (D,d) be any interpretation and v the corresponding valuation

using the substitutional reading. Then for any universally quantified formula

we have v(8x(a)) ¼ 1 iff v(a[a/x]) ¼ 1 for every constant symbol a of the

language. If D is finite and a1,. . .,an are constants naming all its elements,

then this holds iff v(a[a1/x]^. . .^(a[an/x]) ¼ 1. Likewise, v(9x(a)) ¼ 1 iff

v(a[a1/x]_. . ._(a[an/x]) ¼ 1.

Thus the truth-value of a formula under an interpretation (D,d) where D is

finite with n elements can also be calculated by a translation into a quantifier-free

formula (i.e. one with only truth-functional connectives). We translate 8x(a) and

(9x(a) into a[a1/x]^. . .^a[an/x] and a[a1/x]_. . ._a[an/x] respectively, where

a1,. . .,an are constants chosen to name all elements of D.

EXERCISE 9.3.4 (WITH PARTIAL SOLUTION)

Take again the formulae of Exercise 9.3.1 (a), (b), (c), translate them into

quantifier-free formulae for a two-element domain, and obtain the same

results once more by assigning truth-values to atomic formulae and evalu-

ating as in propositional logic.

Solution to (a): Let a, b be constants. The translation of 8x(Px_Qx) is

(Pa_Qa)^(Pb_Qb) while the translation of 8x(Px)_8x(Qx) is

(Pa^Pb)_(Qa^Qb). Let v be the propositional assignment that puts

e.g. v(Pa) ¼ 1 ¼ v(Qb) and v(Pb) ¼ 0 ¼ v(Qa). Then by truth-tables

v((Pa_Qa)^(Pb_Qb)) ¼ 1 while v((Pa^Pb)_(Qa^Qb)) ¼ 0 as

desired.

9.4 Logical Consequence etc

We now have all the apparatus for defining rigorously the notions of logical

consequence, equivalence etc for formulae in the language of quantificational

logic. In effect, we take the same definitions as for truth-functional logic, and
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plug in the more elaborate semantics. To reduce clutter, write v for v(D,d). The

definitions are:

l A logically implies b (or: b is a logical consequence of A) and we write A j- b iff

there is no interpretation (D,d) such that v(a) ¼ 1 for all a 2 A but v(b) ¼ 0.

l a is logically equivalent to b, and we write a -k- b, iff both a j- b and b j- a.

Equivalently: a -k- b iff v(a) ¼ v(b)for every interpretation (D,d).

l a is a logically true iff v(a) ¼ 1 for every interpretation (D,d).

l a is a contradiction iff v(a) ¼ 0 for every interpretation (D,d). More generally,

a set A of formulae is inconsistent iff for every interpretation (D,d) there is a

formula a 2 A with v(a) ¼ 0.

l a is contingent iff it is neither logically true nor a contradiction.

Evidently, the five bulleted concepts above are interrelated in the same way as

their counterparts in propositional logic, with essentially the same verifications.

For example, a is logically true iff ˘ j- a.

In Section 9.2 we already noted a number of important logical equivalences,

and they can all be verified using the definitions above. For example, the first

quantifier interchange principle :8x(a) -k- 9x (:a) can be verified in excruciating

detail as follows, using say the x-variant reading. Consider any interpretation

(D,d), and let v¼ vD,d. Then v(:8x(a))¼ 1 iff v(8x(a))¼ 0, iff not every x-variant

interpretation (D,d0) gives v0(a)¼ 1, iff some x-variant interpretation (D,d0) gives

v 0(a) ¼ 0, iff some x-variant interpretation (D,d0) gives v 0(:a) ¼ 1, iff v(9x(:a))

¼ 1 as desired.

EXERCISE 9.4.1

(a) Verify the same logical equivalence using the substitutional reading of

the quantifiers.

(b) Verify one of the distribution equivalences of Section 9.2, using either

the x-variant or the substitutional reading.

In exercises of Section 9.3 we also checked some negative results. In effect, we

saw that 8x(Px_Qx) j-/ 8x(Px)_8x(Qx), 9x(Px)^9x(Qx) j-/ 9x(Px^Qx), and

8x9y(Rxy) j-/ 9y8x(Rxy). In each instance we found an interpretation in a very

small domain (two elements) that does the job. For more complex non-implications

one often needs larger domains. Indeed there are formulae a, b such that a j-/ b but

such that v(b)¼ 1 for every interpretation in a finite domain with v(a)¼ 1: in other

words, such non-implications can be witnessed only in infinite domains (which,
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however, can always be chosen to be countable). But that is beyond our remit, and

we remain with more elementary matters.

The last of the three non-implications above suggests the general question of

which alternating quantifiers imply which. This is answered in the following

diagram.

The double-headed arrows in the diagram indicate logical equivalence; single-

headed ones are for logical implication. We are looking at formulae with two initial

quantifiers with attached variables; the left column commutes the quantifiers

leaving the attached variables in the fixed order x,y (22 ¼ 4 cases), while the right

column does the same with the attached variables in reverse order y,x (another 22¼
4 cases), thus 8 cases in all. In each case the material quantified remains unchanged.

The diagram is complete in the sense that when there is no path from j to c in the

figure, then j j-/ c.

EXERCISE 9.4.2

(a) Verify the non-implication 9x8y(a) j-/ 9y8x(a) by choosing a to be Rxy

and considering a suitable interpretation. Make life easy by using the

smallest domain that you can get away with. Use either the x-variant or

substitutional account of the quantifier in your verification, as you

prefer.

(b) Verify the implication 9x8y(a) j- 8y9x(a) using the semantics for the

quantifiers. Again, use either the x-variant or substitutional account of

(...)x y (...)y x

(...)x y

(...)x y

(...)x y

(...)y x

(...)y x

(...)y x

Figure 9.1 Logical relations between alternating quantifiers.
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the quantifier in your verification. Warning: Evidently, it is not enough

to consider a single interpretation; you need to show that every inter-

pretation that makes the LHS true also makes the RHS true.

(c) Correct or incorrect? (i) 8x(Px!Qx) j- 8x(Px)!8x(Qx), (ii) the converse.

These relations between alternating quantifiers rest on four fundamental

principles for the quantifiers. To formulate them we need a further concept {

that of a clean substitution.

Recall that a term t may contain variables as well as constants; indeed a

variable standing alone is a term. So when we substitute t for free occurrences of x

in a, it may happen that t contains a variable y that is ‘captured’ by some

quantifier of a. For example, when we substitute y for the sole free occurrence of

x in 9y(Rxy) we get a[y/x]¼ 9y(Ryy): the y that is introduced is in the scope of the

existential quantifier. Such substitutions are undesirable from the point of view of

the principles that we are about to articulate. We say that a substitution a[t/x] is

clean iff no free occurrence of x in a falls within the scope of a quantifier binding

some variable occurring in t.

EXERCISE 9.4.3 (WITH SOLUTION)

Let a¼ 9y(Py_8z(Rzx^8x(Sax))). Which of the following substitutions are

clean? (i) a[y/x], (ii) a[a/x], (iii) a[x/x], (iv) a[z/x], (v) a[z/y], (vi) a[y/w].

Solution: For the first four, note that there is just one free occurrence of x in a.

Then: (i) Not clean, because this occurrence of x is in the scope of 9y. (ii), (iii)

Both clean. (iv) No, because the free occurrence of x is in the scope of8z. For (v),

note that there are no free occurrences of y. Hence, vacuously, the substitution

a[z/y] is clean. (vi) Again vacuously clean: there are no occurrences at all of w.

Comment: This exercise illustrates the following facts, immediate from the

definition: (a) The substitution of a constant for a variable is always clean,

(b) The identity substitution is always clean, (c) A substitution is clean

whenever the variable being replaced has no free occurrences in the formula

{ a fortiori when it has no occurrences at all.

We may now formulate the promised principles about 8. The first is a logical

consequence, the second is a rule about logical consequences.

l 8{ : 8x(a) j- a[t/x], provided the substitution a[t/x] is clean.

l 8þ: Whenever a1,. . .,an j- a then a1,. . .,an j- 8x(a), provided the variable x has

no free occurrences in any of a1,. . .,an.
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As you would expect, there are two dual principles about 9:
l 9þ : a[t/x] j- 9x(a), provided the substitution a[t/x] is clean.

l 9{ : Whenever a1,. . .,an{1, a j- an then a1,. . .,an{1, 9x(a) j- an, provided

the variable x has no free occurrences in any of a1,. . .,an.

EXERCISE 9.4.4 (WITH PARTIAL SOLUTION)

(a) Which of the following are instances of 8{? (i) 8x(Px!Qx) j- Px!Qx,

(ii) 8x(Px!Qx) j- Pb!Qb, (iii) 8x(Px^Qx) j- Px^Qy, (iv) 8x9y(Rxy) j-
9y(Rxy), (v) 8x9y(Rxy) j- 9y(Ryy), (vi) 8x9x(Rxy) j- 9x(Ray), (vii)

8x9y(Rxy) j- 9y(Ryx), (viii) 8x9y(Rxy) j- 9y(Rzy), (ix) 8x9y(Rxy) j-
9y(Ray), (x) 8x9y(Rxy) j- Rxy.

(b) Which of the following are instances of 9þ? (i) Pa j- 9x(Px), (ii) Rxy j-
9x(Rxx), (iii) Rxy j- 9z(Rzy), (iv) Rxy j- 9z(Rzx), (v) 9y(Rxy) j- 9z9y(Rzy).

(c) Which of the following are justified by the indirect rule 8þ, given that

8x9y(Rxyz) j- 9y(Rzyz)? (i) 8x9y(Rxyz) j- 8z9y(Rzyz), (ii) 8x9y(Rxyz) j-
8w9y(Rzyz), (iii) 8x9y(Rxyz) j- 8w9y(Rwyz), (iv) 8x9y(Rxyz) j-
9x9y(Rzyz), (v) 8x9y(Rxyz) j- 8y9y(Rzyz).

(d) Which of the following are justified by the indirect rule 9{, given that

Px,8y(Ryz) j- Px^9z(Rxz)? (i) Px, 9z8y(Ryz) j- Px^9z(Rxz), (ii) Px,

9x8y(Ryz) j- Px^9z(Rxz), (iii) Px, 9w8y(Ryw) j- Px^9z(Rxz), (iv) Px,

9w8y(Ryz) j- Px^9z(Rxz), (v) 9x(Px),8y(Ryz) j- Px^9z(Rxz).

Solution to (a): (i), (ii) Yes; (iii) no; (iv) yes; (v), (vi) and (vii) no; (viii) and

(ix) yes; (x) no.

Note carefully that the two direct implications 8{ and 9þmake substitutions

and require cleanliness. In contrast, the indirect ones 8þ and 9{ do not make

substitutions, and have the different proviso that the quantified variable has no

free occurrences in certain formulae. Commit to memory to avoid conflation!

Alice Box: Why the minus in 9{?

Alice: I’m OK with all that, but I’m bothered by the notation. I can see

why you label the first three rules as you do, but not the fourth. Why

the minus sign in 9{? Surely we are adding the existential quantifier

9x to a!

(Continued)
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Alice Box: (Continued)

Hatter: The name 9{ comes from the use of this principle in natural deduction.

We will come to that shortly, but I think I can explain already the raison

d’être for the minus sign. If we want to establish the principal consequence it

suffices to show the subordinate one. In other words, given the premises

a1,. . .,an{1, 9x(a) we can strip off the existential quantifier, use a as an

additional premise, and head for the same goal an. We are not inferring a
from 9x(a), but procedurally we are moving from 9x(a) to a in building our

indirect inference.

So far we have ignored the identity relation sign. Recall from the preceding

section that this symbol is always given a highly constrained interpretation. At

the most lax, it is interpreted as a congruence relation; in the standard semantics

(used here) it is always taken as the identity relation over the domain of discourse.

Whichever of these interpretations we follow, standard or non-standard, two

special logical implications hold.

The first one reflects the fact that identity is a reflexive relation. It tells

us that the formula 8x(x � x) is true under all interpretations. It will be

convenient for us to express it as a logical consequence with the empty set of

premises:

˘ j- 8xðx � xÞ

The second principle for identity reflects the fact that whenever x is identical

with y then whatever is true of x is true of y. Sometimes dubbed the principle of the

‘indiscernibility of identicals’, its formulation in the language of first-order logic is

a little trickier than one might anticipate.

We need the concept of the replacement of one term by another. Let t, t0 be

terms. They may be constants, variables, or more complex terms made up from

constants and/or variables by iterated application of function letters. We have

already defined what it means for an occurrence of a variable to be free in a

formula; now generalize to say that the term t is free in a iff no occurrence of any

variable in t falls within the scope of a quantifier of a with the same variable

attached to it. Write a[t0//t] (with two strokes rather than one) to indicate the

result of taking any one free occurrence of the term t in a and replacing it by t0.

The replacement �[t//t0] is said to be clean if the occurrence of t0 introduced is

free in �[t//t0]. Then we have the following principle of the indiscernibility of

identicals:
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�; t � t0 j- �½t0==t�; provided the replacement is clean:

For example, taking a to be 9y(Rxy), t to be x, and t0 to be z we have:

9yðRxyÞ; x � zj- 9yðRzyÞ;

since the introduced variable z is free in 9y(Rzy). On the other hand, if we take t0 to

be y then it is not free in a[t0//t], ie. in 9y(Ryy), and so the principle does not

authorize the consequence 9y(Rxy), x � y j- 9y(Ryy). Intuitively speaking, the y

free in the formula x� y has nothing to do with the y bound in 9y(Ryy). The latter

is logically equivalent to 9z(Rzz), and clearly 9y(Rxy), x � y j-/ 9z(Rzz).

EXERCISE 9.4.5 (WITH SOLUTION)

Put a to be 9y(Rf(x,a),y) and t to be f(x,a). Let t1 be g(x), and t2 be f(y,z).

Write out a[t1//t] and a[t2//t], and determine in each case whether the

principle authorizes the consequence a, t � ti j- a[ti//t].

Solution: With t1 chosen as g(x), a[t1//t] becomes 9y(g(x),y), in which the

introduced g(x) is free. The principle thus gives us 9y(Rf(x,a),y), f(x,a) �
g(x) j- 9y(Rg(x),y). On the other hand, with t2 chosen as f(y,z), a[t1//t]

becomes 9y(Rf(y,z),y), in which the introduced f(y,z) is bound. The prin-

ciple does not authorize the implication 9y(Rf(x,a),y), f(x,a) � f(y,z)

j- 9y(Rf(y,z),y).

The proof of the principle of the indiscernibility of identicals is by a rather

tedious induction on the complexity of the formula a, which we omit.

9.5 Natural Deduction with Quantifiers

Can we extend, to the language of the quantifiers, the shortcut systems that were so

successful in propositional logic? The short answer is yes, although there are nuances.

In the case of semantic decomposition trees, we can introduce rules for decom-

posing the quantifiers and handling identity, but the system no longer gives us a

decision procedure. There is no guarantee that the tree terminates in a finite time: it

may have infinitely long branches. Some of the infinitely long branches can be

avoided by allowing the decomposition of an existential statement to give rise to

many children; but some infinite branches (corresponding to interpretations in

infinite domains) may still remain. For them, control procedures are also needed
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to ensure that every decomposition rule eventually gets applied, i.e. that it is not

postponed indefinitely while another rule is applied infinitely many times. Finally,

if we allow non-closed formulae, the identity symbol and function letters in the

language, then the exact formulation of the decomposition rules becomes rather

intricate. Thus, although the study of first-order decomposition trees is fascinating,

it is best left to a course devoted to first-order logic.

On the other hand, natural deduction did not give a decision procedure even in

the limited context of propositional logic, and the transition to the quantifica-

tional context is rather smoother. We describe it briefly in this section. In effect,

we take the six rules for quantifiers and identity that are presented above, and add

them to the stock available from propositional logic. The following four examples

illustrate how this is done.

Example 1. Construct a derivation for the logical consequence 8x(Px!Qx) j-
8x(Px)!8x(Qx), using the rules 8{ and 8þ.

Commentary. As the conclusion is a conditional, we begin with the supposition

8x(Px) for a conditional proof, the goal becoming 8x(Qx). Noting that the variable x

has no free occurrences in either the initial premise or the supposition, we can reset

our goal to be just Qx. We are not applying 8þ yet: we are initiating a strategy,

foreseeing that we should be able to apply it later. Nor are we making any supposition

{ the principal and the subordinate inferences for the rule 8þ have exactly the same

premises, in contrast with all of the other indirect rules considered. For this reason,

the left columns of row 3 are left blank. Straightforward applications of 8{ and modus

ponens lead us to Qx as desired, at which point our goal reverts to8x(Qx). This we get

by the awaited application of 8þ (with n¼ 2), noting that the proviso is satisfied (the

variable x has no free occurrences in the formulae 1,2 on which Qx depends). The final

application of conditional proof completes the derivation.

A lot of analysis for a simple derivation! But that is logic. The pattern revealed

here is quite typical. Roughly speaking, we strip off quantifiers using 8{, make

Table 9.6 A natural deduction using rules for the universal quantifier

N8 Formula From Rule Depends on Current Goal

1 8x(Px!Qx) premise 1 8x(Px)!8x(Qx)

2 8x(Px) supposition 2 8x(Qx)

3 Qx

4 Px 2 8{, proviso OK 2 ditto

5 Px!Qx 1 8{, proviso OK 1 ditto

6 Qx 4,5 modus ponens 1,2 8x(Qx)

7 8x(Qx) 1,2 j- 6 8þ, proviso OK 1,2 8x(Px)!8x(Qx)

8 8x(Px)!8x(Qx) 1,2 j- 7 conditional proof
(discharge 2)

1 &
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truth-functional inferences, and finally use 8þ to get the quantifiers back in a last-

off/first-on fashion. Hence the symmetry of the ‘current goal’ column.

Example 2. The second example shows how the same striptease may be carried

out with the existential quantifier. We construct a derivation for the logical

consequence 9x(Px^Qx) j- 9x(Px)^9x(Qx), using the rules 9{ and 9þ.

Commentary. Observing that the variable x has no free occurrences in either

the initial premise or the conclusion, we make the supposition Px^Qx, planning to

end up with an application of 9{. Note that the goal remains unchanged as

9x(Px)^9x(Qx), following the pattern of the rule for 9{. We are not applying 9{
yet: once again, we are initiating a strategy to apply it later. Straightforward

applications of 9þ and truth-functional steps lead us to 9x(Px)^9x(Qx) as

desired, but still depending on the supposition 2. Applying finally 9{ as planned

(with n ¼ 1) makes the same conclusion depend on 1, as desired.

Example 3. Our third example combines the rules for the two quantifiers. We

construct a derivation for the logical consequence 9x8y(Rxy) j- 8y9x(Rxy), one of

the principles concerning alternating quantifiers that were displayed in Figure

9.1. As there are no truth-functional connectives in this, the derivation will be a

purely quantificational one.

Table 9.7 A natural deduction using rules for the existential quantifier

N8 Formula From Rule Depends on Current Goal

1 9x(Px^Qx) premise 1 9x(Px)^9x(Qx)

2 Px^Qx supposition 2 ditto

3 Px 2 simplification 2 ditto

4 Qx 2 simplification 2 ditto

5 9x(Px) 3 9þ, proviso OK 2 ditto

6 9x(Qx) 4 9þ, proviso OK 2 ditto

7 9x(Px)^9x(Qx) 5, 6 conjunction 2 ditto

8 9x(Px)^9x(Qx) 2 j- 7 9{, proviso OK
(discharge 2)

1 &

Table 9.8 A natural deduction using rules for both quantifiers

N8 Formula From Rule Depends on Current Goal

1 9x8y(Rxy) premise 1 8y9x(Rxy)

2 8y(Rxy) supposition 2 ditto

3 9x(Rxy)

4 Rxy 2 8{, proviso OK 2 ditto

5 9x(Rxy) 4 9þ, proviso OK 2 8y9x(Rxy)

6 8y9x(Rxy) 2 j- 5 8þ, proviso OK 2 ditto

7 8y9x(Rxy) 2 j- 6 9{, proviso OK 1 &

discharge 2
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Commentary. Noting that the variable x has no free occurrences in either

the given premise or the conclusion, we make the supposition 8y(Rxy), planning

to end up with an application of 9{. Note that the goal remains unchanged as

8y9x(Rxy), in accord with the pattern of the rule for 9{. Observing that the

variable y has no free occurrences in 2, we reset the goal to 9x(Rxy) planning

to make a subsequent application of 8þ. Straightforward applications

of 8{ and 9þ give us that goal, so we apply 8þ as foreseen, getting the

initial goal 8y9x(Rxy), but still depending on the supposition 2. Finally

applying 9{ as planned (with n ¼ 1) makes the same conclusion depend on

1, as desired.

Clearly, in this example, some freedom is possible in the order in which things

are done. In particular, we could have written row 3 (reset goal) before row 2

(supposition). But care should be taken: ill-considered reordering can violate the

provisos on the quantifier rules.

By now it is evident that in order to construct derivations using indirect rules,

whether propositional or quantificational, one needs to plan ahead. Near the

beginning we make moves (such as stripping off quantifiers or making supposi-

tions) in order to make other moves (discharging suppositions and restoring

quantifiers) near the end.

Example 4. Our last example uses the rules for identity. We construct a

derivation for the logical consequence ˘ j- 8x8y((x � y)!(y � x)), which

expresses the symmetry of identity.

Table 9.9 A natural deduction using rules for identity

N8 Formula From Rule Current Goal

1 8x8y((x � y)!(yx))

2 8y((x � y)!(y � x))

3 (x � y)!(y � x)

4 x � y supposition y � x

5 8x(x � x) first identity rule ditto

6 x � x 5 8{, proviso OK ditto

7 y � x 6, 4 second identity rule (x � y)!(y � x)

8 (x � y)!(y � x) 4 j- 6 conditional proof 8y((x � y)!(y � x))

9 8y((x � y)!(y � x)) ˘ j- 8 8þ, proviso OK 8x8y((x � y)!(y � x))

10 8x8y((x � y)! (y � x)) ˘ j- 9 8þ, proviso OK &
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Commentary. Because of limited page width we have omitted the ‘‘depends

on’’ column. Note that the formulae in rows 4 and 7 depend on supposition 4; the

other formulae depend on nothing. We focus on the aspects that concern identity.

We are trying to get 8x8y((x � y)!(y � x)) from no premises at all; hence the

empty cells in row 1. We plan to end the derivation with a double 8þ, hence rows 2

and 3. That suggests a conditional proof, whose supposition is in row 4. We can

place 8x(x � x) in row 5 because we know that it follows from the empty set of

premises; and we then strip off its quantifier in row 6. This brings us to the key step

of the whole derivation in row 7, which is an application of the second identity rule.

How? We are claiming that 6, 4 j- 7, i.e. that x� x, x� y j- y� x. This is of the form

a, t� t0 j- a[t0//t], where a is x� x, t is x, t0 is y, and we replace the first occurrence of

x in a by y, giving us a[t0//t] which is y� x. This replacement preserves freedom, so

the proviso of the rule is satisfied. The rest of the derivation discharges the

supposition and restores quantifiers.

A rather intricate derivation for such a simple fact! To get things in perspec-

tive, see row 7 as the crux of the procedure, with the preceding and following rows

as stripping off then getting dressed again.

EXERCISE 9.5.1

Carry out natural deductions for each of the following logical consequences.

(a) 8x(Px) j- 9y(Py)

(b) 9x(Px) j- 9y(Py)

(c) 8x(Px^Qx) j- 8x(Px)^8y(Qy)

(d) 9x8y(Rxy) j- 9x(Rxx)

The rules of natural deduction that we have introduced in this chapter and the

preceding one are sound, in the sense that whenever there is some derivation (of

finite length) of a formula a from a set A of formulae, using the rules of enchain-

ment and indirect inference that we have presented, then A j- a. The proof is

essentially by induction on the length of the derivation, using the fact that all of

the enchainment rules are sound, and that all of the indirect rules preserve logical

consequence.

Moreover, the converse is true: it can be shown that the system of

natural deduction is complete for quantificational logic. That is to say,

whenever A j- a there is some derivation (of finite length) of a from A

using the rules of enchainment and indirect inference that we have described

in this chapter.
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These two theorems, soundness and completeness, stand at the door of an

advanced study of the subject, beyond what is appropriate for an introductory

course, like this one, on sets, logic and finite mathematics.

FURTHER EXERCISES

9.1. The language of quantifiers

(a) Return to the questions raised in the second part of Table 9.1 and

consider them again in the light of the chapter.

(b) Express the following in the language of first-order logic, in each case

specifying explicitly an appropriate domain of discourse and suitable

constants, function letters, and/or predicates:

(i) Zero is less than or equal to every natural number

(ii) If one real number is less than another, there is a third between the

two

(iii) Every computer program has a bug

(iv) Any student who can solve this problem can solve all problems

(v) Squaring on the natural numbers is injective but is not onto

(vi) Nobody loves everybody, but nobody loves nobody.

(c) Identify the free and bound occurrences of variables and terms in the

formula a¼ 8x9y((y� z)!8w9y(Rf(u,w),y)). Identify also the vacuous

quantifiers, if any. Which of the substitutions a[x/z], a[y/z], a[w/z], and

their three converse substitutions, are clean?

9.2. Interpretations

(a) Consider the relation between interpretations of being x-variants (for a

fixed variable x). Is it an equivalence relation? And if the variable x is

not held fixed? Justify.

(b) Find a formula using the identity predicate, which is true under every

interpretation whose domain has less than three elements, but is false

under every interpretation whose domain has three or more elements.

(c) Sketch an explanation why there is no hope of finding a formula that

does not contain the identity predicate, with the same properties.

(d) In the definition of an interpretation, we required that the domain of

discourse is non-empty. Would the definition make sense, as it stands,
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if we allowed the empty domain? How might you reformulate it if you

wanted to admit the empty domain? What would the result be for quanti-

fied statements?

9.3. Logical consequence etc

(a) Justify the principle of vacuous quantification semantically, first using

the x-variant reading of the quantifiers, and then using the substitu-

tional reading. Which is easier?

(b) Which of the following claims are correct? (i) 8x(Px!Qx)

j-9x(Px)!9x(Qx), (ii) 9x(Px!Qx) j- 9x(Px)!9x(Qx), (iii)

8x(Px!Qx) j- 9x(Px)!8x(Qx), (iv) 8x(Px!Qx) j- 8x(Px)!9x(Qx),

and (v) { (viii) their converses. In the negative cases, give an inter-

pretation in a small finite domain to serve as witness. In the positive

cases, sketch a semantic verification using either the x-variant or the

substitutional reading of the quantifiers.

(c) Find a simple formula a such that 8x(a) is a contradiction but a is not.

Use this to get a simple formula b such that 9x(b) is logically true but b
is not. Hint: You can do it without the identity predicate.

(d) Recall from the text that a set A of formulae is said to be consistent iff

there is some interpretation that makes all of its elements true. Verify

the following (i) The empty set is consistent, (ii) A singleton set is

consistent iff its unique element is not a contradiction, (iii) An arbi-

trary set A of formulae is consistent iff A j-/ p^:p. (iv) Every subset of a

consistent set of formulae is consistent, (v) A finite set of formulae is

consistent iff the conjunction of all its elements is consistent.

9.4. Natural deduction

Construct natural deductions for the following logical consequences.

(a) 9x(Px) j- 8x9x(Px).

(b) ˘ j- 8x8y8z((x�y^y�z)!(x�z)). Hint: Strip off the quantifiers, then

use conditional proof, within which you will need to use the second

principle for identity.

(c) 8x8y(Rxy) j- 8x8y(Ryx). Hint: Your first attempt may run into a sub-

stitution snag. Try introducing a fresh variable z and then getting rid of it.

(d) ˘ j- :9y8x(Rxy$:Rxx). Remark: Readers familiar with the paradoxes

of na€ıve set theory will see this as reflecting Russell’s paradox in

abstract form, with an arbitrary relation symbol R replacing 2.
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Those unfamiliar with such matters can still do the exercise. Use proof

by contradiction and strip off.

9.5. General reflection

(a) Given that the method of natural deduction is complete for quantifica-

tional logic, sketch an argument to show that whenever an infinite set

of formulae is inconsistent, it must have an inconsistent finite subset.

Hint: First relate inconsistency to logical consequence as in Exercise

9.3(d)(iii), then make use of the fact that every derivation is, by

definition, of finite length.

(b) Give an intuitive explanation of why the completeness of our system of

natural deduction for quantificational logic does not imply its

decidability.

Selected Reading
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matics, the next two for the same but with more mathematical sophistication,
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reader. We add a last reference which, despite its title, may well be used to go

into a more advanced study of logic.
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